河南省許昌市高級中學2025屆數(shù)學高一上期末達標檢測試題含解析_第1頁
河南省許昌市高級中學2025屆數(shù)學高一上期末達標檢測試題含解析_第2頁
河南省許昌市高級中學2025屆數(shù)學高一上期末達標檢測試題含解析_第3頁
河南省許昌市高級中學2025屆數(shù)學高一上期末達標檢測試題含解析_第4頁
河南省許昌市高級中學2025屆數(shù)學高一上期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省許昌市高級中學2025屆數(shù)學高一上期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則下列說法正確的是()A.若,則 B.若,則C.若且,則 D.若,則2.在一段時間內,若甲去參觀市博物館的概率為0.8,乙去參觀市博物館的概率為0.6,且甲乙兩人各自行動.則在這段時間內,甲乙兩人至少有一個去參觀博物館的概率是()A.0.48 B.0.32C.0.92 D.0.843.中國茶文化博大精深,某同學在茶藝選修課中了解到,茶水的口感與茶葉類型和水的溫度有關,某種綠茶用80℃左右的水泡制可使茶湯清澈明亮,營養(yǎng)也較少破壞.為了方便控制水溫,該同學聯(lián)想到牛頓提出的物體在常溫環(huán)境下溫度變化的冷卻模型:如果物體的初始溫度是℃,環(huán)境溫度是℃,則經(jīng)過分鐘后物體的溫度℃將滿足,其中是一個隨著物體與空氣的接觸狀況而定的正常數(shù).該同學通過多次測量平均值的方法得到初始溫度為100℃的水在20℃的室溫中,12分鐘以后溫度下降到50℃.則在上述條件下,℃的水應大約冷卻()分鐘沖泡該綠茶(參考數(shù)據(jù):,)A.3 B.3.6C.4 D.4.84.已知集合,集合B滿足,則滿足條件的集合B有()個A.2 B.3C.4 D.15.函數(shù)的單調減區(qū)間為()A. B.C. D.6.設a為實數(shù),“”是“對任意的正數(shù)x,”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件7.“對任意,都有”的否定形式為()A.對任意,都有B.不存在,都有C.存在,使得D.存在,使得8.若===1,則a,b,c的大小關系是()A.a>b>c B.b>a>cC.a>c>b D.b>c>a9.已知角終邊經(jīng)過點,若,則()A. B.C. D.10.已知函數(shù)(其中)的最小正周期為,則()A. B.C.1 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)(,,)的部分圖象如圖,則函數(shù)的單調遞增區(qū)間為______.12.棱長為2個單位長度的正方體中,以為坐標原點,以,,分別為,,軸,則與的交點的坐標為__________13.下面有六個命題:①函數(shù)是偶函數(shù);②若向量的夾角為,則;③若向量的起點為,終點為,則與軸正方向的夾角的余弦值是;④終邊在軸上的角的集合是;⑤把函數(shù)的圖像向右平移得到的圖像;⑥函數(shù)在上是減函數(shù).其中,真命題的編號是__________.(寫出所有真命題的編號)14.函數(shù)單調遞增區(qū)間為_____________15.函數(shù)的定義域為______16.已知點,,則以線段為直徑的圓的標準方程是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設,函數(shù).(1)當時,寫出的單調區(qū)間(不用寫出求解過程);(2)若有兩個零點,求的取值范圍.18.設函數(shù)f(1)求函數(shù)fx(2)求函數(shù)fx(3)求函數(shù)fx在閉區(qū)間0,π219.某企業(yè)開發(fā)生產(chǎn)了一種大型電子產(chǎn)品,生產(chǎn)這種產(chǎn)品的年固定成本為2500萬元,每生產(chǎn)百件,需另投入成本(單位:萬元),當年產(chǎn)量不足30百件時,;當年產(chǎn)量不小于30百件時,;若每件電子產(chǎn)品的售價為5萬元,通過市場分析,該企業(yè)生產(chǎn)的電子產(chǎn)品能全部銷售完.(1)求年利潤(萬元)關于年產(chǎn)量(百件)的函數(shù)關系式;(2)年產(chǎn)量為多少百件時,該企業(yè)在這一電子產(chǎn)品的生產(chǎn)中獲利最大?20.某工廠進行廢氣回收再利用,把二氧化硫轉化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為200噸,最多為500噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關系可近似地表示為,且每處理一噸二氧化硫得到可利用的化工產(chǎn)品價值為100元.(1)該單位每月處理量為多少噸時,才能使每噸的月平均處理成本最低?(2)該工廠每月進行廢氣回收再利用能否獲利?如果獲利,求月最大利潤;如果不獲利,求月最大虧損額.21.已知函數(shù)(1)求的定義域;(2)判斷的奇偶性并予以證明;(3)求不等式的解集

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)選項舉反例即可排除ABC,結合不等式性質可判斷D【詳解】對A,取,則有,A錯;對B,取,則有,B錯;對C,取,則有,C錯;對D,若,則正確;故選:D2、C【解析】根據(jù)題意求得甲乙都不去參觀博物館的概率,結合對立事件的概率計算公式,即可求解.【詳解】由甲去參觀市博物館的概率為0.8,乙去參觀市博物館的概率為0.6,可得甲乙都不去參觀博物館的概率為,所以甲乙兩人至少有一個去參觀博物館的概率是.故選:C.3、B【解析】根據(jù)題意求出k的值,再將θ=80℃,=100℃,=20℃代入即可求得t的值.【詳解】由題可知:,沖泡綠茶時水溫為80℃,故.故選:B.4、C【解析】寫出滿足題意的集合B,即得解.【詳解】因為集合,集合B滿足,所以集合B={3},{1,3},{2,3},{1,2,3}.故選:C【點睛】本題主要考查集合的并集運算,意在考查學生對這些知識的理解掌握水平.5、A【解析】求出的范圍,函數(shù)的單調減區(qū)間為的增區(qū)間,即可得到答案.【詳解】由可得或函數(shù)的單調減區(qū)間為的增區(qū)間故選:A6、A【解析】根據(jù)題意利用基本不等式分別判斷充分性和必要性即可.【詳解】若,因為,則,當且僅當時等號成立,所以充分性成立;取,因為,則,當且僅當時等號成立,即時,對任意的正數(shù)x,,但,所以必要性不成立,綜上,“”是“對任意的正數(shù)x,”的充分非必要條件.故選:A.7、D【解析】全稱命題的否定是特稱命題,據(jù)此得到答案.【詳解】全稱命題的否定是特稱命題,則“對任意,都有”的否定形式為:存在,使得.故選:D.【點睛】本題考查了全稱命題的否定,屬于簡單題.8、D【解析】由求出的值,由求得的值,由=1求得的值,從而可得答案【詳解】由,可得故,由,可得,故,由,可得,故,故選D【點睛】本題主要考查對數(shù)的定義,對數(shù)的運算性質的應用,屬于基礎題.9、C【解析】根據(jù)三角函數(shù)的定義,列出方程,即可求解.【詳解】由題意,角終邊經(jīng)過點,可得,又由,根據(jù)三角函數(shù)的定義,可得且,解得.故選:C.10、D【解析】根據(jù)正弦型函數(shù)的最小正周期求ω,從而可求的值.【詳解】由題可知,,∴.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由函數(shù)的圖象得到函數(shù)的周期,同時根據(jù)圖象的性質求得一個單調增區(qū)間,然后利用周期性即可寫出所有的增區(qū)間.【詳解】由圖可知函數(shù)f(x)的最小正周期.如圖所示,一個周期內的最低點和最高點分別記作,分別作在軸上的射影,記作,根據(jù)的對稱性可得的橫坐標分別為,∴是函數(shù)f(x)的一個單調增區(qū)間,∴函數(shù)的單調增區(qū)間是,故答案為:,【點睛】本題關鍵在于掌握函數(shù)圖象的對稱性和周期性.一般往往先從函數(shù)的圖象確定函數(shù)中的各個參數(shù)的值,再利用函數(shù)的解析式和正弦函數(shù)的性質求得單調區(qū)間,但是直接由圖象得到函數(shù)的周期,并根據(jù)函數(shù)的圖象的性質求得一個單調增區(qū)間,進而寫出所有的增區(qū)間,更為簡潔.12、【解析】設即的坐標為13、①⑤【解析】對于①函數(shù),則=,所以函數(shù)是偶函數(shù);故①對;對于②若向量的夾角為,根據(jù)數(shù)量積定義可得,此時的向量應該為非零向量;故②錯;對于③=,所以與軸正方向的夾角的余弦值是-;故③錯;對于④終邊在軸上的角的集合是;故④錯;對于⑤把函數(shù)的圖像向右平移得到,故⑤對;對于⑥函數(shù)=在上是增函數(shù).故⑥錯;故答案為①⑤.14、【解析】先求出函數(shù)的定義域,再利用求復合函數(shù)單調區(qū)間的方法求解即得.【詳解】依題意,由得:或,即函數(shù)的定義域是,函數(shù)在上單調遞減,在上單調遞增,而在上單調遞增,于是得在是單調遞減,在上單調遞增,所以函數(shù)的單調遞增區(qū)間為.故答案為:15、【解析】由對數(shù)的真數(shù)大于零、二次根式的被開方數(shù)非負,分式的分母不為零,列不等式組可求得答案【詳解】由題意得,解得,所以函數(shù)的定義域為,故答案為:16、【解析】,,中點坐標為,圓的半徑以為直徑的圓的標準方程為,故答案為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)增區(qū)間是,減區(qū)間是;(2)【解析】(1)根據(jù)函數(shù)的圖象即可寫出;(2)根據(jù)函數(shù)零點的定義結合分類討論思想即可求出小問1詳解】的增區(qū)間是,減區(qū)間是【小問2詳解】由得;由得或,當時,得或,所以1是的零點,①當時,則都不是的零點,故只有一個零點;②當時,即時,為使有兩個零點,則,解得,此時的兩個零點為.當時,得,所以1不是的零點,為使有兩個零點,則,解得,此時的兩個零點為,所以.綜上,當或時,即的取值范圍為,有兩個零點18、(1)π(2)π3+kπ,(3)fx在0,π2內的最大值為【解析】(1)利用三角恒等變換化簡可得fx=sin2x-π(2)令π2+2k≤2x-π6≤3π2+2k,k∈Z(3)由0≤x≤π2,可得-π6≤2x-π6≤5π【小問1詳解】f(x)=sin2x-cos2x+2cosxcos=-cos2x+2cosxcos=-cos2x+1+cos2x2+=32sin2x-12cos2x=sin2x-π函數(shù)f(x)的最小正周期為T=2π2=【小問2詳解】令π2+2k≤2x-π6≤3π2+2k解得π3+k≤x≤5π6+k,函數(shù)f(x)的單調遞減間為π3+kπ,【小問3詳解】因為0≤x≤π2,-π6≤2x-π6≤當2x-π6=π2時,即x=π3時,f(x19、(1);(2)100百件【解析】(1)根據(jù)收益總收入成本,進行分情況討論,構建出分段函數(shù);(2)對分段函數(shù)每一段進行研究最大值,然后再求出整個函數(shù)的最大值.【詳解】解:(1)當時,;當時,;;(2)當時,,當時,;當時,,當且僅當,即時,.年產(chǎn)量為100百件時,該企業(yè)獲得利潤最大,最大利潤為1800萬元.【點睛】本題考查了數(shù)學建模問題、分段函數(shù)最值問題,數(shù)學建模要能準確地從題意中抽象出函數(shù)模型,分段函數(shù)是一個函數(shù),分段不分家,一般需要分情況討論。20、(1)400噸;(2)該工廠每月廢氣回收再利用不獲利,月最大虧損額為27500元.【解析】(1)由題意可知,二氧化碳每噸的平均處理成本為,化簡后再利用基本不等式即可求出最小值.(2)該單位每月獲利為元,則,由的范圍,利用二次函數(shù)的性質得到的范圍即可得結論【詳解】(1)由題意可知,二氧化碳每噸的平均處理成本為,當且僅當,即時等號成立,故該單位月處理量為400噸時,才能使每噸的平均處理成本最低,最低成本為150元.(2)不獲利,設該單位每月獲利為元,則,因為,所以時取最大值,時取最小值,所以.故該工廠每月廢氣回收再利用不獲利,月最大虧損額為27500元.【點睛】方法點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論