浙江省杭州市學軍中學2025屆數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第1頁
浙江省杭州市學軍中學2025屆數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第2頁
浙江省杭州市學軍中學2025屆數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第3頁
浙江省杭州市學軍中學2025屆數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第4頁
浙江省杭州市學軍中學2025屆數(shù)學高二上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省杭州市學軍中學2025屆數(shù)學高二上期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列中,,則()A.15 B.30C.45 D.602.如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器內(nèi)注水,當球面恰好接觸水面時測得水深為6cm,如果不計容器的厚度,則球的體積為A. B.C. D.3.已知數(shù)列是公差為等差數(shù)列,,則()A.1 B.3C.6 D.94.△ABC的兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.5.已知函數(shù),,若對于任意的,存在唯一的,使得,則實數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]6.已知函數(shù),則等于()A.0 B.2C. D.7.過點且與橢圓有相同焦點的雙曲線方程為()A B.C. D.8.設(shè)函數(shù),則曲線在點處的切線方程為()A. B.C. D.9.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.10.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.11.等比數(shù)列中,,,則()A. B.C. D.12.已知直線l:過橢圓的左焦點F,與橢圓在x軸上方的交點為P,Q為線段PF的中點,若,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右焦點為,短軸的一個端點為,直線交橢圓于兩點.若,點到直線的距離不小于,則橢圓的離心率的取值范圍是______________14.與直線平行,且距離為的直線方程為______15.某中學高三(2)班甲,乙兩名同學自高中以來每次考試成績的莖葉圖如圖所示,則甲的中位數(shù)與乙的極差的和為___________.16.若,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.18.(12分)已知函數(shù).(1)求曲線在處的切線方程;(2)求曲線過點的切線方程.19.(12分)已知函數(shù)在處取得極值7(1)求的值;(2)求函數(shù)在區(qū)間上的最大值20.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點M,使得平面MEF平面SCD?若存在,求出點M的位置;若不存在,請說明理由21.(12分)三棱錐各棱長為2,E為AC邊上中點(1)證明:面BDE;(2)求二面角的正弦值22.(10分)已知橢圓C:(a>b>0)的離心率e為,點在橢圓上(1)求橢圓C的方程;(2)若A、B為橢圓的左右頂點,過點(1,0)的直線交橢圓于M、N兩點,設(shè)直線AM、BN的斜率分別為,求證為定值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)等差數(shù)列的性質(zhì),可知,從而可求出結(jié)果.【詳解】解:根據(jù)題意,可知等差數(shù)列中,,則,所以.故選:D.2、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題3、D【解析】結(jié)合等差數(shù)列的通項公式求得.【詳解】設(shè)公差,.故選:D4、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎(chǔ)題.5、B【解析】結(jié)合導數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結(jié)合已知條件可得,,從而可求出實數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當時,,由時,,時,,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因為開口向下,對稱軸為軸,又,所以當時,,當時,,則函數(shù)在[,2]上的值域為[a–4,a],且函數(shù)f(x)在,圖象關(guān)于軸對稱,在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點睛】本題考查了利用導數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點是這一條件的轉(zhuǎn)化.6、D【解析】先通過誘導公式將函數(shù)化簡,進而求出導函數(shù),然后算出答案.【詳解】由題意,,故選:D.7、D【解析】設(shè)雙曲線的方程為,再代點解方程即得解.【詳解】解:由得,所以橢圓的焦點為.設(shè)雙曲線的方程為,因為雙曲線過點,所以.所以雙曲線的方程為.故選:D8、A【解析】利用導數(shù)的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A9、D【解析】由題干條件得到,設(shè)出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關(guān)系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設(shè),則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D10、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B11、D【解析】設(shè)公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項公式計算可得;【詳解】解:設(shè)公比為,因為,,所以,即,解得,所以;故選:D12、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點,設(shè)橢圓的右焦點為,所以,又是的中點,是的中點,所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)左焦點為,連接,.則四邊形是平行四邊形,可得.設(shè),由點M到直線l的距離不小于,即有,解得.再利用離心率計算公式即可得出范圍【詳解】設(shè)左焦點為,連接,.則四邊形是平行四邊形,故,所以,所以,設(shè),則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點睛】本題考查了橢圓的定義標準方程及其性質(zhì)、點到直線的距離公式、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題14、或【解析】由題意,設(shè)所求直線方程為,根據(jù)兩平行直線間的距離公式即可求解.【詳解】解:由題意,設(shè)所求直線方程為,因為直線與直線的距離為,所以,解得或,所以所求直線方程為或,故答案為:或.15、111【解析】求出甲的中位數(shù)和乙的極差即得解.【詳解】解:由題得甲的中位數(shù)為,乙的極差為,所以它們的和為.故答案為:11116、【解析】分別令和,再將兩個等式相加可求得的值.【詳解】令,則;令,則.上述兩式相加得故答案為:.【點睛】本題考查偶數(shù)項系數(shù)和的計算,一般令和,通過對等式相加減求得,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設(shè),以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設(shè),以為坐標原點如圖建系,則,,所以、,設(shè)平面的法向量則,故可取設(shè)平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,18、(1);(2).【解析】(1)首先求導函數(shù),計算,接著根據(jù)導數(shù)的幾何意義確定切線的斜率,最后根據(jù)點斜式寫出直線方程即可;(2)因為點不在曲線上,所以設(shè)切點為,根據(jù)導數(shù)的幾何意義寫出切線的方程,代入點求解,最后寫出切線方程即可.【詳解】(1).,.所以曲線在處的切線方程為,即(2)設(shè)切點為,則曲線在點處的切線方程為,代入點得,,.所以曲線過點的切線方程為,即.19、(1);(2).【解析】(1)先對函數(shù)求導,根據(jù)題中條件,列出方程組求解,即可得出結(jié)果;(2)先由(1)得到,導數(shù)的方法研究其單調(diào)性,進而可求出最值.【詳解】(1)因為,所以,又函數(shù)在處取得極值7,,解得;,所以,由得或;由得;滿足題意;(2)又,由(1)得在上單調(diào)遞增,在上單調(diào)遞減,因此【點睛】方法點睛:該題考查的是有關(guān)利用導數(shù)研究函數(shù)的問題,解題方法如下:(1)先對函數(shù)求導,根據(jù)題意,結(jié)合函數(shù)在某個點處取得極值,導數(shù)為0,函數(shù)值為極值,列出方程組,求得結(jié)果;(2)將所求參數(shù)代入,得到解析式,利用導數(shù)研究其單調(diào)性,得到其最大值.20、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標系,先求得平面SCD的一個法向量,再由求解;(2)假設(shè)存在點M,使得平面MEF平面SCD,再求得平面MEF的一個法向量,然后由求解.小問1詳解】解:分別取AB,BC中點M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標系,,所以,設(shè)平面SCD的一個法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設(shè)存在點M,使得平面MEF平面SCD,,,設(shè)平面MEF的一個法向量,,令,則,平面MEF平面SCD,,,存在點,此時M與S重合.21、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理即可證明;(2)建立如圖所示坐標系,則,易知平面BCD的法向量,利用空間向量法求出面BDE的法向量,結(jié)合向量的數(shù)量積計算即可得出結(jié)果.【小問1詳解】正四面體中各面分別是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論