版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省撫州臨川市第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù),若實(shí)數(shù)是函數(shù)的零點(diǎn),且,則()A. B.C. D.無法確定2.拋物線的焦點(diǎn)坐標(biāo)是A. B.C. D.3.甲乙兩名運(yùn)動員在某項體能測試中的6次成績統(tǒng)計如表:甲9816151514乙7813151722分別表示甲乙兩名運(yùn)動員這項測試成績的平均數(shù),分別表示甲乙兩名運(yùn)動員這項測試成績的標(biāo)準(zhǔn)差,則有()A., B.,C., D.,4.橢圓中以點(diǎn)為中點(diǎn)的弦所在直線斜率為()A. B.C. D.5.下列語句中是命題的是A.周期函數(shù)的和是周期函數(shù)嗎? B.C. D.梯形是不是平面圖形呢?6.在平行六面體中,點(diǎn)P在上,若,則()A. B.C. D.7.某工廠去年的電力消耗為千瓦,由于設(shè)各更新,該工廠計劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦8.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.9.函數(shù),的最小值為()A.2 B.3C. D.10.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣111.在等差數(shù)列中,若,則()A.5 B.6C.7 D.812.已知函數(shù)的導(dǎo)函數(shù)滿足,則()A. B.C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.命題“,”的否定是____________.14.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實(shí)數(shù)m的值為________.15.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________16.若直線l經(jīng)過A(2,1),B(1,)兩點(diǎn),則l的斜率取值范圍為_________________;其傾斜角的取值范圍為_________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為矩形,底面,,點(diǎn)是棱的中點(diǎn)(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值18.(12分)【2018年新課標(biāo)I卷文】已知函數(shù)(1)設(shè)是的極值點(diǎn).求,并求的單調(diào)區(qū)間;(2)證明:當(dāng)時,19.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在第一象限且為拋物線上一點(diǎn),點(diǎn)在點(diǎn)右側(cè),且△恰為等邊三角形(1)求拋物線的方程;(2)若直線與交于兩點(diǎn),向量的夾角為(其中為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.20.(12分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;21.(12分)已知雙曲線的左、右焦點(diǎn)分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.22.(10分)已知圓C經(jīng)過,,三點(diǎn),并且與y軸交于P,Q兩點(diǎn),求線段PQ的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用函數(shù)在遞減求解.【詳解】因為函數(shù)在遞減,又實(shí)數(shù)是函數(shù)的零點(diǎn),即,又因為,所以,故選:A2、D【解析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)為可知,拋物線即的焦點(diǎn)坐標(biāo)為,故選D.考點(diǎn):拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).3、B【解析】根據(jù)給定統(tǒng)計表計算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B4、A【解析】先設(shè)出弦的兩端點(diǎn)的坐標(biāo),分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率【詳解】設(shè)弦的兩端點(diǎn)為,,代入橢圓得兩式相減得,即,即,即,即,弦所在的直線的斜率為,故選:A5、B【解析】命題是能判斷真假的語句,疑問句不是命題,易知為命題,故選B6、C【解析】利用空間向量基本定理,結(jié)合空間向量加法的法則進(jìn)行求解即可.【詳解】因為,,所以有,因此,故選:C7、D【解析】根據(jù)等比數(shù)列的定義進(jìn)行求解即可.【詳解】因為去年的電力消耗為千瓦,工廠計劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D8、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時,,所以在單調(diào)遞減,排除選項A、B,當(dāng)時,先正后負(fù),所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.9、B【解析】求導(dǎo)函數(shù),分析單調(diào)性即可求解最小值【詳解】由,得,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增∴當(dāng)時,取得最小值,且最小值為故選:B.10、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時取最小值故選:C11、B【解析】由得出.【詳解】由可得,故選:B12、C【解析】先對函數(shù)求導(dǎo),再由,可求出的關(guān)系式,然后求【詳解】由,得,因為,所以,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】根據(jù)全稱命題量詞的否定即可得出結(jié)果.【詳解】命題“”的否定是“,”故答案為:14、1【解析】由兩條直線垂直可知,進(jìn)而解得答案即可.【詳解】因為兩條直線垂直,所以.故答案為:1.15、【解析】先求出直線所過的定點(diǎn),當(dāng)該定點(diǎn)為弦的中點(diǎn)時弦長最短,利用點(diǎn)斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過定點(diǎn)圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.16、①.②.【解析】根據(jù)直線l經(jīng)過A(2,1),B(1,)兩點(diǎn),利用斜率公式,結(jié)合二次函數(shù)性質(zhì)求解;設(shè)其傾斜角為,,利用正切函數(shù)的性質(zhì)求解.【詳解】因為直線l經(jīng)過A(2,1),B(1,)兩點(diǎn),所以l的斜率為,所以l的斜率取值范圍為,設(shè)其傾斜角為,,則,所以其傾斜角的取值范圍為,故答案為:,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因為平面,四邊形為矩形,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因為,因此,平面.所以,平面的一個法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.18、(1)a=;f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增.(2)證明見解析.【解析】分析:(1)先確定函數(shù)的定義域,對函數(shù)求導(dǎo),利用f′(2)=0,求得a=,從而確定出函數(shù)的解析式,之后觀察導(dǎo)函數(shù)的解析式,結(jié)合極值點(diǎn)的位置,從而得到函數(shù)的增區(qū)間和減區(qū)間;(2)結(jié)合指數(shù)函數(shù)的值域,可以確定當(dāng)a≥時,f(x)≥,之后構(gòu)造新函數(shù)g(x)=,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得g(x)≥g(1)=0,利用不等式的傳遞性,證得結(jié)果.詳解:(1)f(x)的定義域為,f′(x)=aex–由題設(shè)知,f′(2)=0,所以a=從而f(x)=,f′(x)=當(dāng)0<x<2時,f′(x)<0;當(dāng)x>2時,f′(x)>0所以f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增(2)當(dāng)a≥時,f(x)≥設(shè)g(x)=,則當(dāng)0<x<1時,g′(x)<0;當(dāng)x>1時,g′(x)>0.所以x=1是g(x)的最小值點(diǎn)故當(dāng)x>0時,g(x)≥g(1)=0因此,當(dāng)時,點(diǎn)睛:該題考查的是有關(guān)導(dǎo)數(shù)的應(yīng)用問題,涉及到的知識點(diǎn)有導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值、導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系以及證明不等式問題,在解題的過程中,首先要保證函數(shù)的生存權(quán),先確定函數(shù)的定義域,之后根據(jù)導(dǎo)數(shù)與極值的關(guān)系求得參數(shù)值,之后利用極值的特點(diǎn),確定出函數(shù)的單調(diào)區(qū)間,第二問在求解的時候構(gòu)造新函數(shù),應(yīng)用不等式的傳遞性證得結(jié)果.19、(1)(2)【解析】(1)根據(jù)△恰為等邊三角形由題意知:得到,再利用拋物線的定義求解;(2)聯(lián)立,結(jié)合韋達(dá)定理,根據(jù)的夾角為,由求解.【小問1詳解】解:由題意知:,由拋物線的定義知:,由,解得,所以拋物線方程為;【小問2詳解】設(shè),由,得,則,,則,,因為向量的夾角為,所以,,則,且,所以,解得,所以實(shí)數(shù)的取值范圍.20、(1)證明見詳解(2)【解析】(1)將線面平行轉(zhuǎn)化為面面平行,由已知易證;(2)延長相交與點(diǎn)F,利用等體積法求點(diǎn)A到平面PCE,然后由可得.【小問1詳解】四邊形ABCD為正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小問2詳解】延長相交與點(diǎn)F,因為,所以分別為的中點(diǎn).記點(diǎn)到平面PCF為d,直線AB與平面PCE所成角為,則.易知,,,,因為平面ABCD,所以,所以因為,所以由得:即,得所以22.21、(1);(2).【解析】(1)聯(lián)立直線方程與雙曲線方程,求得交點(diǎn)的坐標(biāo),再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化產(chǎn)業(yè)發(fā)展基金擔(dān)保合同范本3篇
- 個人融資借款利息合同樣本版B版
- 專用實(shí)驗儀器采購合同范本2024版B版
- 高等職業(yè)學(xué)校辦學(xué)條件重點(diǎn)監(jiān)測指標(biāo)
- 2025年海南鮮品品牌IP授權(quán)與開發(fā)合同3篇
- 2024年適用最高限額擔(dān)保合同范本一
- 福建省南平市松溪縣鄭墩中學(xué)2020-2021學(xué)年高二數(shù)學(xué)理月考試題含解析
- 2024年瀝青物資采購協(xié)議樣本版
- 2024年項目借調(diào)人員合同集
- 2024年物業(yè)服務(wù)管理合同標(biāo)的說明
- 二年級下冊語文《第3單元 口語交際:長大以后做什么》課件
- 自動控制原理(山東大學(xué))智慧樹知到期末考試答案2024年
- ba年會快閃開場模板
- 游戲你來比劃我來猜的PPT
- 污水處理設(shè)備供貨方案
- GB/T 45007-2024職業(yè)健康安全管理體系小型組織實(shí)施GB/T 45001-2020指南
- BRC全球標(biāo)準(zhǔn)包裝材料標(biāo)準(zhǔn)講義
- 2024福建省能化集團(tuán)下屬古雷熱電有限責(zé)任公司社會招聘筆試參考題庫附帶答案詳解
- 江蘇省蘇州市2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標(biāo)調(diào)研政治試卷
- 廣東省中山市2023-2024學(xué)年七年級上學(xué)期期末英語試題
- 超聲科崗前培訓(xùn)課件
評論
0/150
提交評論