2025屆吉林大學附屬中學高一上數(shù)學期末檢測模擬試題含解析_第1頁
2025屆吉林大學附屬中學高一上數(shù)學期末檢測模擬試題含解析_第2頁
2025屆吉林大學附屬中學高一上數(shù)學期末檢測模擬試題含解析_第3頁
2025屆吉林大學附屬中學高一上數(shù)學期末檢測模擬試題含解析_第4頁
2025屆吉林大學附屬中學高一上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林大學附屬中學高一上數(shù)學期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象,若在上為增函數(shù),則的最大值為A B.C. D.2.已知圓方程為,過該圓內一點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積是()A.4 B.C.6 D.3.“,”的否定是()A., B.,C., D.,4.將函數(shù)的圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是A. B.C. D.5.設函數(shù),,則函數(shù)的零點個數(shù)是A.4 B.3C.2 D.16.直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,則直線l2的斜率為()A. B.C.1 D.﹣17.如果是定義在上的函數(shù),使得對任意的,均有,則稱該函數(shù)是“-函數(shù)”.若函數(shù)是“-函數(shù)”,則實數(shù)的取值范圍是()A. B.C. D.8.已知a=log23+log2,b=log29-log2,c=log32,則a,b,c的大小關系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c9.若,則的最小值為()A. B.C. D.10.把表示成,的形式,則的值可以是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),,其中表示不超過x的最大整數(shù).例如:,,.①______;②若對任意都成立,則實數(shù)m的取值范圍是______12.已知,則的值為________13.已知函數(shù),將函數(shù)圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位,得到函數(shù)的解析式______14.已知冪函數(shù)的圖象過點,則________15.已知是定義在R上的周期為2的奇函數(shù),當時,,則___________.16.函數(shù)的定義域是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù).(1)求的最小正周期和最大值;(2)求的單調遞增區(qū)間.18.函數(shù)(其中)的圖像如圖所示.(Ⅰ)求函數(shù)的解析式;(Ⅱ)求函數(shù)在上的最大值和最小值.19.冰雪裝備器材產業(yè)是冰雪產業(yè)重要組成部分,加快發(fā)展冰雪裝備器材產業(yè),對籌辦好北京2022年冬奧會、冬殘奧會,帶動我國3億人參與冰雪運動具有重要的支撐作用.某冰雪裝備器材生產企業(yè),生產某種產品的年固定成本為300萬元,每生產千件,需另投入成本(萬元).當年產量低于60千件時,;當年產量不低于60千件時,.每千件產品售價為60萬元,且生產的產品能全部售完.(1)寫出年利潤(萬元)關于年產量(千件)的函數(shù)解析式;(2)當年產量為多少千件時,企業(yè)所獲得利潤最大?最大利潤是多少?20.已知函數(shù)(1)求函數(shù)的最小正周期和單調遞減區(qū)間;(2)求函數(shù),的值域21.已知非空集合,.(1)當時,求,;(2)若“”是“”的充分不必要條件,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題意可知,由在上為增函數(shù),得,選B.2、C【解析】由圓的方程可知圓心為,半徑,則過圓內一點的最長弦為直徑,最短弦為該點與圓心連線的垂線段,進而求解即可【詳解】由題,圓心為,半徑,過圓內一點的最長弦為直徑,故;當時,弦長最短,因為,所以,因為在直徑上,所以,所以四邊形ABCD的面積是,故選:C【點睛】本題考查過圓內一點弦長的最值問題,考查兩點間距離公式的應用,考查數(shù)形結合思想3、C【解析】利用含有一個量詞的命題的否定的定義求解即可【詳解】“,”的否定是“,,”故選:C4、C【解析】將函數(shù)的圖象上所有的點向右平行移動個單位長度,所得函數(shù)圖象的解析式為y=sin(x-);再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是.故選C.5、B【解析】函數(shù)的零點個數(shù)就是函數(shù)的圖象和函數(shù)的圖象的交點個數(shù),分別畫出函數(shù)的圖象和函數(shù)的圖象,如圖,由圖知,它們的交點個數(shù)是,函數(shù)的零點個數(shù)是,故選B.【方法點睛】已知函數(shù)零點(方程根)的個數(shù)求參數(shù)取值范圍的三種常用的方法:(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解.一是轉化為兩個函數(shù)的圖象的交點個數(shù)問題,畫出兩個函數(shù)的圖象,其交點的個數(shù)就是函數(shù)零點的個數(shù),二是轉化為的交點個數(shù)的圖象的交點個數(shù)問題.6、C【解析】利用直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,則,解出即可.【詳解】因為直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直.所以,即.解得:.故選:C【點睛】本題考查由兩條直線互相垂直求參數(shù)的問題,屬于基礎題7、A【解析】根據(jù)題中的新定義轉化為,即,根據(jù)的值域求的取值范圍.【詳解】,,函數(shù)是“-函數(shù)”,對任意,均有,即,,即,又,或.故選:A【點睛】關鍵點點睛:本題考查函數(shù)新定義,關鍵是讀懂新定義,并使用新定義,并能轉化為函數(shù)值域解決問題.8、B【解析】利用對數(shù)的運算性質求出a、b、c的范圍,即可得到正確答案.【詳解】因為a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故選:B9、B【解析】由,根據(jù)基本不等式,即可求出結果.【詳解】因為,所以,,因此,當且僅當,即時,等號成立.故選:B.10、B【解析】由結合弧度制求解即可.【詳解】∵,∴故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】①代入,由函數(shù)的定義計算可得答案;②分別計算時,時,時,時,時,時,時,的值,建立不等式,求解即可【詳解】解:①∵,∴②當時,;當時,;當時,;當時,;當時,;當時,;當時,又對任意都成立,即恒成立,∴,∴,∴實數(shù)m的取值范圍是故答案為:;.【點睛】關鍵點睛:本題考查函數(shù)的新定義,關鍵在于理解函數(shù)的定義,分段求值,建立不等式求解.12、【解析】利用正弦、余弦、正切之間的商關系,分式的分子、分母同時除以即可求出分式的值.【詳解】【點睛】本題考查了同角三角函數(shù)的平方和關系和商關系,考查了數(shù)學運算能力.13、【解析】根據(jù)三角函數(shù)圖象的變換可得答案.【詳解】將函數(shù)圖象上各點的橫坐標縮短到原來的倍,得,再將得到的圖象向右平移個單位得故答案為:14、3【解析】先求得冪函數(shù)的解析式,再去求函數(shù)值即可.【詳解】設冪函數(shù),則,則,則,則故答案為:315、##【解析】根據(jù)函數(shù)的周期和奇偶性即可求得答案.【詳解】因為函數(shù)的周期為2的奇函數(shù),所以.故答案為:.16、【解析】要使函數(shù)有意義,則,解得,函數(shù)的定義域是,故答案為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期,最大值為;(2).【解析】把化簡為,(1)直接寫出最小正周期和最大值;(2)利用正弦函數(shù)的單調性直接求出單調遞增區(qū)間.【詳解】(1)的最小正周期;最大值為;(2)要求的單調遞增區(qū)間,只需,解得:,即的單調遞增區(qū)間為.18、(Ⅰ);(Ⅱ)最大值為1,最小值為0.【解析】(Ⅰ)由圖象可得,從而得可得,再根據(jù)函數(shù)圖象過點,可求得,故可得函數(shù)的解析式.(Ⅱ)根據(jù)的范圍得到的范圍,得到的范圍后可得的范圍,由此可得函數(shù)的最值試題解析:(Ⅰ)由圖像可知,,∴,∴.∴又點在函數(shù)的圖象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴當時,函數(shù)取得最大值為1;當時,函數(shù)取得最小值為0點睛:根據(jù)圖象求解析式y(tǒng)=Asin(ωx+φ)的方法(1)根據(jù)函數(shù)圖象的最高點或最低點可求得A;(2)ω由周期T確定,即先由圖象得到函數(shù)的周期,再求出T(3)φ的求法通常有以下兩種:①代入法:把圖象上的一個已知點代入解析式(此時,A,ω,B已知)求解即可,此時要注意交點在上升區(qū)間還是下降區(qū)間②五點法:確定φ值時,往往以尋找“五點法”中的零點作為突破口,具體如下:“第一點”(即圖象上升時與x軸的交點中距原點最近的交點)為ωx+φ=0;“第二點”(即圖象的“峰點”)為ωx+φ=;“第三點”(即圖象下降時與x軸的交點)為ωx+φ=;“第四點”(即圖象的“谷點”)為ωx+φ=;“第五點”為ωx+φ=19、(1)(2)當該企業(yè)年產量為50千件時,所獲得利潤最大,最大利潤是950萬元【解析】(1)根據(jù)題意,分段寫出年利潤的表達式即可;(2)根據(jù)年利潤的解析式,分段求出兩種情況下的最大利潤值,比較大小,可得答案.【小問1詳解】當時,;當時,.所以;【小問2詳解】當時,.當時,取得最大值,且最大值為950.當時,當且僅當時,等號成立.因為,所以當該企業(yè)年產量為50千件時,所獲得利潤最大,最大利潤是950萬元.20、(1),單調遞減區(qū)間(2)【解析】(1)先利用三角函數(shù)恒等變換公式對函數(shù)化簡變形得,從而可求出函數(shù)的周期,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論