2025屆漯河市重點中學數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第1頁
2025屆漯河市重點中學數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第2頁
2025屆漯河市重點中學數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第3頁
2025屆漯河市重點中學數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第4頁
2025屆漯河市重點中學數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆漯河市重點中學數(shù)學高二上期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平面上動點到點的距離與它到直線的距離之比為,則動點的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓2.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.3.若拋物線的焦點為,則其標準方程為()A. B.C. D.4.已知命題P:,,則命題P的否定為()A., B.,C., D.,5.已知函數(shù),若,,則實數(shù)的取值范圍是A. B.C. D.6.已知數(shù)列中,,(),則()A. B.C. D.27.下列關于斜二測畫法所得直觀圖的說法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④8.已知雙曲線的右焦點為F,雙曲線C的右支上有一點P滿是(點O為坐標原點),那么雙曲線C的離心率為()A. B.C. D.9.已知拋物線C:,則過拋物線C的焦點,弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.202210.的展開式中的系數(shù)為,則()A. B.C. D.11.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.12.在二項式的展開式中,前三項的系數(shù)成等差數(shù)列,把展開式中所有的項重新排成一列,則有理項互不相鄰的概率()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點的直線與拋物線相交于,兩點,,則直線的方程為______.14.如圖所示,高爾頓釘板是一個關于概率的模型,每一黑點表示釘在板上的一顆釘子,它們彼此的距離均相等,上一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時,將隨機的向兩邊等概率的落下.當有大量的小球都落下時,最終在釘板下面不同位置收集到小球.現(xiàn)有5個小球從正上方落下,則恰有3個小球落到2號位置的概率是______15.已知圓和直線.(1)求直線l所經過的定點的坐標,并判斷直線與圓的位置關系;(2)求當k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.16.等比數(shù)列中,,,則數(shù)列的公比為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)“既要金山銀山,又要綠水青山”.濱江風景區(qū)在一個直徑為100米的半圓形花園中設計一條觀光線路(如圖所示).在點與圓弧上的一點(不同于A,B兩點)之間設計為直線段小路,在直線段小路的兩側(注意是兩側)種植綠化帶;再從點到點設計為沿弧的弧形小路,在弧形小路的內側(注意是一側)種植綠化帶(注:小路及綠化帶的寬度忽略不計).(1)設(弧度),將綠化帶總長度表示為的函數(shù);(2)試確定的值,使得綠化帶總長度最大.(弧度公式:,其中為弧所對的圓心角)18.(12分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標;(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點19.(12分)已知橢圓的右焦點為,短軸長為4,設,的左右有兩個焦點求橢圓C的方程;若P是該橢圓上的一個動點,求的取值范圍;是否存在過點的直線l與橢圓交于不同的兩點C,D,使得?若存在,求出直線l的方程;若不存在,請說明兩點20.(12分)各項都為正數(shù)的數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)求;(3)設,數(shù)列的前項和為,求使成立的的最小值.21.(12分)(1)求焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程;(2)求經過點的拋物線的標準方程;22.(10分)若是雙曲線的兩個焦點.(1)若雙曲線上一點到它的一個焦點的距離等于10,求點到另一個焦點距離;(2)如圖若是雙曲線左支上一點,且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設點,利用距離公式化簡可得出點的軌跡方程,即可得出動點的軌跡圖形.【詳解】設點,由題意可得,化簡可得,即,曲線為反比例函數(shù)圖象,故動點的軌跡是雙曲線.故選:A.2、A【解析】求出的最小值,由切線長公式可結論【詳解】解:由,得最小時,最小,而,所以故選:A.3、D【解析】由題意設出拋物線的標準方程,再利用焦點為建立,解方程即可.【詳解】由題意,設拋物線標準方程為,所以,解得,所以拋物線標準方程為.故選:D4、B【解析】根據特稱命題的否定變換形式即可得出結果【詳解】命題:,,則命題的否定為,故選:B5、A【解析】函數(shù),若,,可得,解得或,則實數(shù)的取值范圍是,故選A.6、A【解析】由已知條件求出,可得數(shù)是以3為周期的周期數(shù)列,從而可得,進而可求得答案【詳解】因為,(),所以,所以數(shù)列的周期為3,,故選:A7、B【解析】根據斜二側直觀圖的畫法法則,直接判斷①②③④的正確性,即可推出結論【詳解】由斜二測畫法規(guī)則知:三角形的直觀圖仍然是三角形,所以①正確;根據平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯誤;根據平行于x軸的長度不變,平行于y軸的長度減半知,正方形的直觀圖不再是正方形,所以④錯誤.故選:B.8、D【解析】分析焦點三角形即可【詳解】如圖,設左焦點為,因為,所以不妨設,則離心率故選:D9、A【解析】根據已知條件,結合拋物線的性質,先求出過焦點的最短弦長,再結合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A10、B【解析】根據二項式展開式的通項,先求得x的指數(shù)為1時r的值,再求得a的值.【詳解】由題意得:二項式展開式的通項為:,令,則,故選:B11、D【解析】根據已知條件可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.12、A【解析】先根據前三項的系數(shù)成等差數(shù)列求,再根據古典概型概率公式求結果【詳解】因為前三項的系數(shù)為,,,當時,為有理項,從而概率為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據拋物線方程可得焦點坐標,進而點P為拋物線的焦點,設,利用拋物線的定義可得,有軸,即可得出結果.【詳解】由題意知,拋物線的焦點坐標,又,所以點P為拋物線的焦點,設,由,由拋物線的定義得,解得,所以AB垂直與x軸,所以直線AB的方程為:.故答案為:14、【解析】先研究一個小球從正上方落下的情況,從而可求出一個小球從正上方落下落到2號位置的概率,進而可求出5個小球從正上方落下,則恰有3個小球落到2號位置的概率【詳解】如圖所示,先研究一個小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類推,小球所有的路線情況如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落入2號位置的有4種,所以每個球落入2號位置的概率為,所以5個小球從正上方落下,則恰有3個小球落到2號位置的概率為,故答案為:15、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質知,當直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標準方程為,圓心為,半徑為,而,所以點P在圓內,所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質知,當直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.16、【解析】根據等比數(shù)列的定義,結合已知條件,代值計算即可求得結果.【詳解】因為是等比數(shù)列,設其公比為,又,,故可得,解得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長公式求出弧的長度,則可得函數(shù);(2)利用導數(shù)可求得結果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長為(2)由(1)可知,令得,因為所以,當單調遞增,當單調遞減,所以當時,使得綠化帶總長度最大.【點睛】關鍵點點睛:仔細審題,注意題目中的關鍵詞“兩側”和“一側”是解題關鍵.18、(1)(2)見解析【解析】(1)由拋物線的定義,可得點的坐標;(2)可設直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達定理求得,,再根據,可得,從而可求得參數(shù)的關系,即可得出結論.【小問1詳解】解:設,,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標為;【小問2詳解】證明:由題意知直線不能與軸平行,可設直線的方程為,與拋物線聯(lián)立得,消去得,設,,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當時,,所以直線過定點19、(1)(2)(3)滿足條件的直線不存在,詳見解析【解析】根據條件直接求出,進而求出橢圓標準方程;設,表示出,求出其范圍;設CD的中點為;由,則;得到其斜率的乘積為,最后列取方程聯(lián)立計算即可.【詳解】解:由題意可知,,則;所以橢圓C的方程為:;由題意可知,,設,則,;所以的取值范圍是;假設存在滿足條件的直線,根據題意得直線的斜率存在;則設直線的方程為:;消化簡得:;,則;;設,則CD的中點為;,;,則;,即;即,無解;故滿足條件的直線不存在.【點睛】本題考查橢圓的簡單幾何性質,向量的數(shù)量積,直線的垂直,設而不求的思想方法,關鍵在于將幾何條件進行適當?shù)霓D化,還考查了學生的綜合運算能力,屬于中檔題.20、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關系式,結合等差數(shù)列的定義,即可求得數(shù)列的通項公式;(2)化簡,結合裂項相消法求出數(shù)列的和;(3)利用分組法求得,結合,即可求得的最小值.【小問1詳解】解:因為各項都為正數(shù)的數(shù)列的前項和為,且滿足,當時,解得;當時,;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項,2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當為偶數(shù)時,,因為,且為偶數(shù),所以的最小值為48;當為奇數(shù)時,,不存在最小的值,故當為48時,滿足條件.21、(1);(2)或.【解析】(1)由虛軸長是12求出半虛軸b,根據雙曲線的性質c2=a2+b2以及離心率,求出a2,寫出雙曲線的標準方程;(2)設出拋物線方程,利用經過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點在x軸上,設所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點在x軸上的雙曲線的方程為(2)由于點P在第三象限,所以拋物線方程可設為:或(p>0)當方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論