版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
陜西省西安市高新第一中學(xué)國際部2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)到準(zhǔn)線的距離()A.4 B.C.2 D.2.點(diǎn)F是拋物線的焦點(diǎn),點(diǎn),P為拋物線上一點(diǎn),P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.3.已知雙曲線滿足,且與橢圓有公共焦點(diǎn),則雙曲線的方程為()A. B.C. D.4.命題“,”的否定形式是()A., B.,C., D.,5.若數(shù)列滿足,則()A. B.C. D.6.下列函數(shù)中,以為最小正周期,且在上單調(diào)遞減的為()A. B.C. D.7.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.8.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點(diǎn)中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg9.設(shè)R,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.若橢圓與直線交于兩點(diǎn),過原點(diǎn)與線段AB中點(diǎn)的直線的斜率為,則A. B.C. D.211.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.12.已知F是拋物線x2=y(tǒng)的焦點(diǎn),A、B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到x軸的距離為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,,若,,共面,則實(shí)數(shù)___________.14.已知等差數(shù)列的前n項(xiàng)和為公差為d,且滿足則的取值范圍是_____________,的取值范圍是_____________15.函數(shù)的最小值為______.16.曲線在點(diǎn)處的切線方程為_____________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知向量,,且.(1)求滿足上述條件的點(diǎn)M(x,y)的軌跡C的方程;(2)設(shè)曲線C與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)P,Q,點(diǎn)A(0,1),當(dāng)|AP|=|AQ|時(shí),求實(shí)數(shù)m的取值范圍.18.(12分)從①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并作答設(shè)等差數(shù)列的前n項(xiàng)和為,,______;設(shè)數(shù)列的前n項(xiàng)和為,(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和注:作答前請先指明所選條件,如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分19.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).(1)證明:PB∥平面AEC(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積20.(12分)已知函數(shù).(1)若,求的極值;(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)a取值范圍.21.(12分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點(diǎn)C到平面BEF的距離22.(10分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】寫出拋物線的標(biāo)準(zhǔn)方程,即可確定焦點(diǎn)到準(zhǔn)線的距離.【詳解】由題設(shè),拋物線的標(biāo)準(zhǔn)方程為,則,∴焦點(diǎn)到準(zhǔn)線的距離為4.故選:A.2、C【解析】由拋物線的定義轉(zhuǎn)化后求距離最值【詳解】拋物線的焦點(diǎn),準(zhǔn)線為過點(diǎn)作準(zhǔn)線于點(diǎn),故△PAF的周長為,,可知當(dāng)三點(diǎn)共線時(shí)周長最小,為故選:C3、A【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,利用雙曲線,結(jié)合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標(biāo)準(zhǔn)方程為,橢圓中的,雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關(guān)系建立方程求出,,是解決本題的關(guān)鍵,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題4、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A5、C【解析】利用前項(xiàng)積與通項(xiàng)的關(guān)系可求得結(jié)果.【詳解】由已知可得.故選:C.6、B【解析】A.利用正切函數(shù)的性質(zhì)判斷;B.作出的圖象判斷;C.作出的圖象判斷;D.作出的圖象判斷.【詳解】A.是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;B.如圖所示:,由圖象知:函數(shù)是以為最小正周期,在上單調(diào)遞減,故正確;C.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;D.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;故選:B7、B【解析】根據(jù)邏輯聯(lián)結(jié)詞“且”,一假則假,對四個(gè)選項(xiàng)一一判斷直接即可判斷.【詳解】邏輯聯(lián)結(jié)詞“且”,一假則假.因?yàn)槊}p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯(cuò)誤;為真,故B正確;為假,故C錯(cuò)誤;為假,故D錯(cuò)誤.故選:B8、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤故選D9、A【解析】根據(jù)不等式性質(zhì)判斷即可.【詳解】若“”,則成立;反之,若,當(dāng),時(shí),不一定成立.如,但.故“”是“”的充分不必要條件.故答案為:A.【點(diǎn)睛】本題考查充分條件、必要調(diào)價(jià)的判斷,考查不等式與不等關(guān)系,屬于基礎(chǔ)題.10、D【解析】細(xì)查題意,把代入橢圓方程,得,整理得出,設(shè)出點(diǎn)的坐標(biāo),由根與系數(shù)的關(guān)系可以推出線段的中點(diǎn)坐標(biāo),再由過原點(diǎn)與線段的中點(diǎn)的直線的斜率為,進(jìn)而可推導(dǎo)出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設(shè),則,從而線段的中點(diǎn)的橫坐標(biāo)為,縱坐標(biāo),因?yàn)檫^原點(diǎn)與線段中點(diǎn)的直線的斜率為,所以,所以,故選D.【點(diǎn)睛】該題是一道關(guān)于直線與橢圓的綜合性題目,涉及到的知識(shí)點(diǎn)有直線與橢圓相交時(shí)對應(yīng)的解題策略,中點(diǎn)坐標(biāo)公式,斜率坐標(biāo)公式,屬于簡單題目.11、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A12、B【解析】根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出,的中點(diǎn)縱坐標(biāo),求出線段的中點(diǎn)到軸的距離【詳解】解:拋物線的焦點(diǎn)準(zhǔn)線方程,設(shè),,,解得,線段的中點(diǎn)縱坐標(biāo)為,線段的中點(diǎn)到軸的距離為,故選:B【點(diǎn)睛】本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問題,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】根據(jù)向量共面,可設(shè),先求解出的值,則的值可求.【詳解】因?yàn)?,,共面且,不共線,所以可設(shè),所以,所以,所以,所以,故答案為:1.14、①.②.【解析】通過判斷出,進(jìn)而將化為基本量求得答案;然后用基本量將化簡,進(jìn)而通過的范圍求得答案.【詳解】由,,,故答案為:15、1【解析】由解析式知定義域?yàn)椋懻?、、,并結(jié)合導(dǎo)數(shù)研究的單調(diào)性,即可求最小值.【詳解】由題設(shè)知:定義域?yàn)?,∴?dāng)時(shí),,此時(shí)單調(diào)遞減;當(dāng)時(shí),,有,此時(shí)單調(diào)遞減;當(dāng)時(shí),,有,此時(shí)單調(diào)遞增;又在各分段的界點(diǎn)處連續(xù),∴綜上有:時(shí),單調(diào)遞減,時(shí),單調(diào)遞增;∴故答案為:1.16、【解析】首先判定點(diǎn)在曲線上,然后利用導(dǎo)數(shù)的幾何意義求得答案.【詳解】由題意可知點(diǎn)在曲線上,而,故曲線在點(diǎn)處的切線斜率為,所以切線方程:,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)+y2=1;(2).【解析】(1)應(yīng)用向量垂直的坐標(biāo)表示得x2+3y2=3,即可寫出M的軌跡C的方程;(2)由直線與曲線C交于不同的兩點(diǎn)P(x1,y1),Q(x2,y2),設(shè)直線y=kx+m(k≠0),聯(lián)立方程整理所得方程有,且由根與系數(shù)關(guān)系用m,k表示x1+x2,x1x2,若N為PQ的中點(diǎn)結(jié)合|AP|=|AQ|知PQ⊥AN可得m、k的等量關(guān)系,結(jié)合即可求m的范圍.【詳解】(1)∵,即,∴,即有x2+3y2=3,即點(diǎn)M(x,y)的軌跡C的方程為+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲線C與直線y=kx+m(k≠0)相交于不同的兩點(diǎn),∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.設(shè)P(x1,y1),Q(x2,y2),線段PQ的中點(diǎn)N(x0,y0),則.∵|AP|=|AQ|,即知PQ⊥AN,設(shè)kAN表示直線AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.將②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范圍為.【點(diǎn)睛】思路點(diǎn)睛:1、由向量垂直,結(jié)合其坐標(biāo)表示得到關(guān)于x,y的方程,寫出曲線C的標(biāo)準(zhǔn)方程即可.2、由直線與曲線C相交,聯(lián)立方程有,由|AP|=|AQ|得直線的垂直關(guān)系,即斜率之積為-1,進(jìn)而可求參數(shù)的范圍.18、(1)條件選擇見解析,,(2)【解析】(1)設(shè)數(shù)列的首項(xiàng)為,公差為d,選①由求解;選②由求解;選③由求解;則,由,利用數(shù)列通項(xiàng)與前n項(xiàng)和公式求解;(2)易知,再利用錯(cuò)位相減法求解.【小問1詳解】解:設(shè)數(shù)列的首項(xiàng)為,公差為d,選①得,則,選②得,則,選③得,則,所以數(shù)列的通項(xiàng)公式為因?yàn)?,所以?dāng)時(shí),,則當(dāng)時(shí),,則,所以是以首項(xiàng)為2,公比為2的等比數(shù)列,所以【小問2詳解】因?yàn)?,所以?shù)列的前n項(xiàng)和①②①-②得∴,則19、【解析】(Ⅰ)連接BD交AC于O點(diǎn),連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長AE至M連結(jié)DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積試題解析:(1)證明:連接BD交AC于點(diǎn)O,連接EO.因?yàn)锳BCD為矩形,所以O(shè)為BD中點(diǎn)又E為PD的中點(diǎn),所以EO∥PB.因?yàn)镋O?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因?yàn)镻A⊥平面ABCD,ABCD為矩形,所以AB,AD,AP兩兩垂直如圖,以A為坐標(biāo)原點(diǎn),,AD,AP的方向?yàn)閤軸y軸z軸的正方向,||為單位長,建立空間直角坐標(biāo)系A(chǔ)-xyz,則D,E,=.設(shè)B(m,0,0)(m>0),則C(m,,0),=(m,,0)設(shè)n1=(x,y,z)為平面ACE的法向量,則即可取n1=.又n2=(1,0,0)為平面DAE的法向量,由題設(shè)易知|cos〈n1,n2〉|=,即=,解得m=.因?yàn)镋為PD的中點(diǎn),所以三棱錐E-ACD的高為.三棱錐E-ACD的體積V=××××=.考點(diǎn):二面角的平面角及求法;棱柱、棱錐、棱臺(tái)的體積;直線與平面平行的判定20、(1)極小值為,無極大值(2)【解析】(1)利用導(dǎo)數(shù)求出,分別令、,進(jìn)而得到函數(shù)的單調(diào)區(qū)間,即可求出極值;(2)利用導(dǎo)數(shù)討論、0時(shí)函數(shù)的單調(diào)性,進(jìn)而得出函數(shù)的最小值小于0,解不等式即可.【小問1詳解】函數(shù)的定義域?yàn)?,時(shí),.令,解得,∵在上,,在上,,∴在上單調(diào)遞減,在上單調(diào)遞增,∴的極小值為,無極大值.【小問2詳解】,當(dāng)時(shí),,∴在上單調(diào)遞增,此時(shí)不可能有2個(gè)零點(diǎn).當(dāng)0時(shí).令,得,∵在上,,在上,),∴在上單調(diào)遞減,在上單調(diào)遞增,∴的最小值為.∵有兩個(gè)零點(diǎn),∴,即,∴.經(jīng)驗(yàn)證,若,則,且,又,∴有兩個(gè)零點(diǎn).綜上,a的取值范圍是.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,進(jìn)而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進(jìn)而求得答案.【小問1詳解】因?yàn)镈E⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因?yàn)锳BCD是正方形,所以DA⊥DC.以D為坐標(biāo)原點(diǎn),所在方向分別為軸的正方向建立空間直角坐標(biāo)系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設(shè)平面BEF的法向量,因?yàn)?,所以?x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因?yàn)椋?-2,2,0),所以,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國防靜電包裝材料行業(yè)規(guī)模分析及投資前景規(guī)劃研究報(bào)告
- 2025-2030年中國鐵路道岔產(chǎn)業(yè)運(yùn)行現(xiàn)狀及投資發(fā)展前景預(yù)測報(bào)告新版
- 2024版權(quán)代理合同書范本及標(biāo)的詳細(xì)描述
- 2024版標(biāo)準(zhǔn)個(gè)人借款合同范本
- 2024版購房押金合同書范文
- 2024版綜合醫(yī)療中心裝修合同3篇
- 2025年施工合同信息化建設(shè)與智能管理創(chuàng)新3篇
- 商業(yè)綜合體商鋪?zhàn)赓U代理服務(wù)合同(二零二五年版)2篇
- 2024版裝修公司設(shè)計(jì)人員勞動(dòng)合同
- 2025年度二手豪華轎車轉(zhuǎn)賣合同協(xié)議
- 貨運(yùn)企業(yè)2025年度安全檢查計(jì)劃
- 以發(fā)展為導(dǎo)向共創(chuàng)教育新篇章-2024年期末校長總結(jié)講話稿
- 2025年焊工安全生產(chǎn)操作規(guī)程(2篇)
- 廣東省廣州越秀區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 臨床經(jīng)鼻高流量濕化氧療患者護(hù)理查房
- 2024年貴州省中考數(shù)學(xué)真題含解析
- 參考新醫(yī)大-中央財(cái)政支持地方高校發(fā)展專項(xiàng)資金建設(shè)規(guī)
- 《中醫(yī)內(nèi)科學(xué)關(guān)格》課件
- 2024年中國PCB板清洗劑市場調(diào)查研究報(bào)告
- 《紙管》規(guī)范要求
- 【數(shù)學(xué)】2021-2024年新高考數(shù)學(xué)真題考點(diǎn)分布匯
評論
0/150
提交評論