2025屆貴州省安順市高二上數(shù)學期末質量檢測試題含解析_第1頁
2025屆貴州省安順市高二上數(shù)學期末質量檢測試題含解析_第2頁
2025屆貴州省安順市高二上數(shù)學期末質量檢測試題含解析_第3頁
2025屆貴州省安順市高二上數(shù)學期末質量檢測試題含解析_第4頁
2025屆貴州省安順市高二上數(shù)學期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆貴州省安順市高二上數(shù)學期末質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.32.已知函數(shù)在上可導,且,則與的大小關系為A. B.C. D.不確定3.已知向量,,且,則的值是()A. B.C. D.4.拋物線的準線方程是A.x=1 B.x=-1C. D.5.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.6.設,則曲線在點處的切線的傾斜角是()A. B.C. D.7.已知是和的等比中項,則圓錐曲線的離心率為()A. B.或2C. D.或8.驚艷全世界的南非雙曲線大教堂是由倫敦著名的建筑事務所完成的,建筑師的設計靈感源于想法:“你永無止境的愛是多么的珍貴,人們在你雄偉的翅膀下庇護”.若將如圖所示的雙曲線大教堂外形弧線的一段近似看成雙曲線()下支的一部分,且此雙曲線的一條漸近線方程為,則此雙曲線的離心率為()A. B.C. D.9.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.10.橢圓上一點到一個焦點的距離為,則到另一個焦點的距離是()A. B.C. D.11.若函數(shù)單調遞增,則實數(shù)a的取值范圍為()A. B.C. D.12.設拋物線的焦點為,準線與軸的交點為,是上一點,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,,則_____________.14.數(shù)列的前項和為,則該數(shù)列的通項公式___________15.已知橢圓的兩個焦點分別為,,,點在橢圓上,若,且的面積為4,則橢圓的標準方程為______16.已知正項等比數(shù)列的前項和為,且,則_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知雙曲線C的焦點為、,實軸長為.(1)求雙曲線C的標準方程;(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,求直線l的方程.18.(12分)已知的三個內角,,的對邊分別為,,,且滿足.(1)求角的大??;(2)若,,,求的長.19.(12分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設,求數(shù)列的前項和.20.(12分)如圖所示,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=(1)求證:EF∥平面ADD1A1;(2)求平面EFD與平面DEC的夾角的余弦值;(3)在線段A1D1上是否存在點M,使得BM⊥平面EFD?若存在,求出的值;若不存在,請說明理由21.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(1)求證:平面;(2)求證:平面22.(10分)如圖,已知橢圓的短軸端點為、,且,橢圓C的離心率,點,過點P的動直線l橢圓C交于不同的兩點M、N與,均不重合),連接,,交于點T(1)求橢圓C的方程;(2)求證:當直線l繞點P旋轉時,點T總在一條定直線上運動;(3)是否存在直線l,使得?若存在,求出直線l的方程;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出拋物線C的準線l的方程,過A作l的垂線段,結合幾何意義及拋物線定義即可得解.【詳解】拋物線的準線l:,顯然點A在拋物線C內,過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D2、B【解析】由,所以.3、A【解析】求出向量,的坐標,利用向量數(shù)量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.4、C【解析】先把拋物線方程整理成標準方程,進而求得p,再根據(jù)拋物線性質得出準線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準線方程是y=﹣故答案為C【點睛】本題主要考查拋物線的標準方程和簡單性質.屬基礎題5、D【解析】根據(jù)圓的割線定理,結合圓的性質進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D6、C【解析】根據(jù)導數(shù)的概念可得,再利用導數(shù)的幾何意義即可求解.【詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C7、B【解析】由等比中項的性質可得,分別計算曲線的離心率.【詳解】由是和的等比中項,可得,當時,曲線方程為,該曲線為焦點在軸上的橢圓,離心率,當時,曲線方程為,該曲線為焦點在軸上的雙曲線,離心率,故選:B.8、B【解析】首先根據(jù)雙曲線的漸近線方程得到,從而得到,,,再求離心率即可.【詳解】雙曲線,,,因為雙曲線的一條漸近線方程為,即,所以,解得,所以,,,.故選:B9、A【解析】根據(jù)命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數(shù)的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應滿足,解得,所以實數(shù)的取值范圍是故選:A10、B【解析】利用橢圓的定義可得結果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點的距離是.故選:B.11、D【解析】根據(jù)函數(shù)的單調性,可知其導數(shù)在R上恒成立,分離參數(shù),即可求得答案.【詳解】由題意可知單調遞增,則在R上恒成立,可得恒成立,當時,取最小值-1,故,故選:D12、D【解析】求出拋物線的準線方程,可得出點的坐標,利用拋物線的定義可求得點的坐標,再利用兩點間的距離公式可求得結果.【詳解】易知拋物線焦點為,準線方程為,可得準線與軸的交點,設點,由拋物線的性質,,可得,所以,,解得,即點,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設可得,應用累加法有,結合已知即可求.【詳解】由題設,,所以,又,所以.故答案為:.14、【解析】根據(jù)與關系求解即可.【詳解】當時,,當時,,檢驗:,所以.故答案為:15、【解析】由題意得到為直角三角形.設,,根據(jù)橢圓的離心率,定義,直角三角形的面積公式,勾股定理建立方程的方程組,消元后可求得的值.【詳解】由題可知,∴,又,代入上式整理得,由得為直角三角形又的面積為4,設,,則解得所以橢圓的標準方程為16、【解析】根據(jù)給定條件求出正項等比數(shù)列的公比即可計算作答.【詳解】設正項等比數(shù)列的公比為,依題意,,即,而,解得,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2).【解析】(1)根據(jù)條件,結合雙曲線定義即可求得雙曲線的標準方程.(2)當斜率不存在時,不符合題意;當斜率存在時,設出直線方程,聯(lián)立雙曲線,變形后由中點坐標公式可求得斜率,即可求得直線方程.【詳解】(1)根據(jù)題意,焦點在軸上,且,所以,雙曲線的標準方程為C:.(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,當直線斜率不存在時,直線方程為,則由雙曲線對稱性可知線段的中點在軸上,所以不滿足題意;當斜率存在時,設直線方程為,設,則,化簡可得,因為有兩個交點,所以化簡可得恒成立,所以,因為恰好為線段的中點,則,化簡可得,所以直線方程為,即.【點睛】本題考查根據(jù)雙曲線定義求雙曲線標準方程,直線與雙曲線的位置關系,由中點坐標求直線方程,屬于中檔題.18、(1);(2).【解析】(1)由正弦定理化邊為角后,結合兩角和的正弦公式、誘導公式可求得;(2)用表示出,然后平方由數(shù)量積的運算求得向量的模(線段長度)【詳解】(1)因為,所以由正弦定理可得,即,因為,所以,,∵,故;(2)由,得,所以,所以.19、(1)證明見解析(2)【解析】(1)化簡得到,由此證得數(shù)列為等差數(shù)列.(2)先求得,然后利用錯位相減求和法求得.【小問1詳解】.又數(shù)列是以1為首項,4為公差等差數(shù)列.【小問2詳解】由(1)知:,則數(shù)列的通項公式為,則,①,②,①-②得:,,,,.20、(1)證明見解析;(2);(3)不存在;理由見解析【解析】(1)連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO,根據(jù)判定定理證明四邊形AEFO是平行四邊形,進而得到線面平行;(2)建立坐標系,求出兩個面的法向量,求得兩個法向量的夾角的余弦值,進而得到二面角的夾角的余弦值;(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD,設出點M的坐標,由第二問得到平面EFD的一個法向量,判斷出和該法向量不平行,故不存在滿足題意的點M.【詳解】(1)證明:連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO因為F是A1C的中點,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四邊形AEFO是平行四邊形所以EF∥AO因為EF?平面ADD1A1,AO?平面ADD1A1,所以EF∥平面ADD1A1(2)以點A為坐標原點,直線AB,AD,AA1分別為x軸,y軸,z軸建立空間直角坐標系,因為點E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F(xiàn)所以=,=(0,1,1)設平面EFD的法向量為,則即令y=1,則z=-1,x=2所以,由題知,平面DEC的一個法向量為m=(0,0,1),所以cos<,>==所以平面EFD與平面DEC的夾角的余弦值是(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD設點M的坐標為(0,t,2)(0≤t≤2),則=(,t,2)因為平面EFD的一個法向量為,而與不平行,所以在線段A1D1上不存在點M,使得BM⊥平面EFD21、(1)證明見解析;(2)證明見解析.【解析】(1)連接,交于點M,連接ME,則M為中點.根據(jù)三角形的中位線定理和平行四邊形的判斷和性質可證得,再由線面平行的判定定理可得證;(2)由線面垂直的性質和判定可得證.【詳解】證明:(1)連接,交于點M,連接ME,則M為中點因為E、F分別是與的中點,所以,則,從而為平行四邊形,則又因為平面平面,所以平面(2)由平面,因為平面,所以而,M為的中點,所以因為,所以平面,由(1)有,故平面22、(1)(2)證明見解析;(3)不存在直線l,使得成立,理由見解析.【解析】(1)根據(jù)題意,列出方程組,求得,即可求得橢圓的方程;(2)設直線的方程為,聯(lián)立方程組求得,設,根據(jù)和在同一條直線上,列出方程求得的值,即可求解;(3)設直線的為,把轉化為,聯(lián)立方程組求得,代入列方程,求得,即可得到結論.【小問1詳解】解:由題意可得,解得,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論