2024-2025學(xué)年新教材高中數(shù)學(xué)第8章立體幾何初步8.1第2課時(shí)圓柱圓錐圓臺(tái)球與簡(jiǎn)單組合體的結(jié)構(gòu)特征學(xué)案含解析新人教A版必修第二冊(cè)_第1頁
2024-2025學(xué)年新教材高中數(shù)學(xué)第8章立體幾何初步8.1第2課時(shí)圓柱圓錐圓臺(tái)球與簡(jiǎn)單組合體的結(jié)構(gòu)特征學(xué)案含解析新人教A版必修第二冊(cè)_第2頁
2024-2025學(xué)年新教材高中數(shù)學(xué)第8章立體幾何初步8.1第2課時(shí)圓柱圓錐圓臺(tái)球與簡(jiǎn)單組合體的結(jié)構(gòu)特征學(xué)案含解析新人教A版必修第二冊(cè)_第3頁
2024-2025學(xué)年新教材高中數(shù)學(xué)第8章立體幾何初步8.1第2課時(shí)圓柱圓錐圓臺(tái)球與簡(jiǎn)單組合體的結(jié)構(gòu)特征學(xué)案含解析新人教A版必修第二冊(cè)_第4頁
2024-2025學(xué)年新教材高中數(shù)學(xué)第8章立體幾何初步8.1第2課時(shí)圓柱圓錐圓臺(tái)球與簡(jiǎn)單組合體的結(jié)構(gòu)特征學(xué)案含解析新人教A版必修第二冊(cè)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE第2課時(shí)圓柱、圓錐、圓臺(tái)、球與簡(jiǎn)潔組合體的結(jié)構(gòu)特征學(xué)習(xí)目標(biāo)核心素養(yǎng)1.了解圓柱、圓錐、圓臺(tái)、球的定義.2.駕馭圓柱、圓錐、圓臺(tái)、球的結(jié)構(gòu)特征.(重點(diǎn))3.相識(shí)簡(jiǎn)潔組合體的結(jié)構(gòu)特征,了解簡(jiǎn)潔組合體的兩種基本構(gòu)成形式.(重點(diǎn)、易混點(diǎn))通過學(xué)習(xí)有關(guān)旋轉(zhuǎn)體的結(jié)構(gòu)特征,培育直觀想象、邏輯推理、數(shù)學(xué)運(yùn)算的數(shù)學(xué)素養(yǎng).如圖,視察下列實(shí)物圖.問題:(1)上述三個(gè)實(shí)物圖抽象出的幾何體與多面體有何不同?(2)上述實(shí)物圖抽象出的幾何體中的曲面能否由某些平面圖形旋轉(zhuǎn)而成?(3)如何形成上述幾何體的曲面?圓柱的結(jié)構(gòu)特征定義以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)一周形成的面所圍成的旋轉(zhuǎn)體叫做圓柱圖示及相關(guān)概念軸:旋轉(zhuǎn)軸叫做圓柱的軸;底面:垂直于軸的邊旋轉(zhuǎn)而成的圓面;側(cè)面:平行于軸的邊旋轉(zhuǎn)而成的曲面;圓柱側(cè)面的母線:無論旋轉(zhuǎn)到什么位置,平行于軸的邊;柱體:圓柱和棱柱統(tǒng)稱為柱體2.圓錐的結(jié)構(gòu)特征定義以直角三角形的一條直角邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)一周形成的面所圍成的旋轉(zhuǎn)體叫做圓錐圖示及相關(guān)概念軸:旋轉(zhuǎn)軸叫做圓錐的軸;底面:垂直于軸的邊旋轉(zhuǎn)而成的圓面;側(cè)面:直角三角形的斜邊旋轉(zhuǎn)而成的曲面;母線:無論旋轉(zhuǎn)到什么位置,不垂直于軸的邊;錐體:棱錐和圓錐統(tǒng)稱為錐體3.圓臺(tái)的結(jié)構(gòu)特征定義用平行于圓錐底面的平面去截圓錐,底面與截面之間的部分叫做圓臺(tái)圖示及相關(guān)概念軸:圓錐的軸;底面:圓錐的底面和截面;側(cè)面:圓錐的側(cè)面在底面與截面之間的部分;母線:圓錐的母線在底面與截面之間的部分;臺(tái)體:棱臺(tái)和圓臺(tái)統(tǒng)稱為臺(tái)體思索1:用平面去截圓錐肯定會(huì)得到一個(gè)圓錐和一個(gè)圓臺(tái)嗎?[提示]不肯定.只有當(dāng)平面與圓錐的底面平行時(shí),才能截得一個(gè)圓錐和一個(gè)圓臺(tái).4.球的結(jié)構(gòu)特征定義以半圓的直徑所在直線為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周形成的曲面叫做球面,球面所圍成的旋轉(zhuǎn)體叫做球體,簡(jiǎn)稱球圖示及相關(guān)概念球心:半圓的圓心叫做球的球心;半徑:連接球心和球面上隨意一點(diǎn)的線段叫做球的半徑;直徑:連接球面上兩點(diǎn)并且經(jīng)過球心的線段叫做球的直徑思索2:球能否由圓面旋轉(zhuǎn)而成?[提示]能.圓面以直徑所在的直線為旋轉(zhuǎn)軸,旋轉(zhuǎn)半周形成的旋轉(zhuǎn)體即為球.5.簡(jiǎn)潔組合體的結(jié)構(gòu)特征(1)簡(jiǎn)潔組合體的定義:由簡(jiǎn)潔幾何體組合而成的幾何體.(2)簡(jiǎn)潔組合體的構(gòu)成有兩種基本形式:簡(jiǎn)潔組合體eq\b\lc\{\rc\(\a\vs4\al\co1(由簡(jiǎn)潔幾何體拼接而成,,由簡(jiǎn)潔幾何體截去或挖去一部分而成.))1.思索辨析(正確的畫“√”,錯(cuò)誤的畫“×”)(1)直角三角形繞一邊所在直線旋轉(zhuǎn)得到的旋轉(zhuǎn)體是圓錐. ()(2)夾在圓柱的兩個(gè)平行平面之間的幾何體是圓柱. ()(3)半圓繞其直徑所在直線旋轉(zhuǎn)一周形成球. ()[答案](1)×(2)×(3)×2.圓錐的母線有()A.1條 B.2條C.3條 D.多數(shù)條D[由圓錐的結(jié)構(gòu)特征知圓錐的母線有多數(shù)條.]3.下列圖形中是圓柱的是________.①②③④②[依據(jù)圓柱的概念可知只有②是圓柱.]4.下列給出的圖形中,繞給出的軸旋轉(zhuǎn)一周(如圖所示),能形成圓臺(tái)的是________.(填序號(hào))①②③④①[依據(jù)定義,①形成的是圓臺(tái),②形成的是球,③形成的是圓柱,④形成的是圓錐.]旋轉(zhuǎn)體的結(jié)構(gòu)特征【例1】(1)下列說法不正確的是()A.圓柱的側(cè)面綻開圖是一個(gè)矩形B.圓錐過軸的截面是一個(gè)等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺(tái)平行于底面的截面是圓面(2)給出下列命題:①圓柱的母線與它的軸可以不平行;②圓錐的頂點(diǎn)、圓錐底面圓周上隨意一點(diǎn)及底面圓的圓心三點(diǎn)的連線都可以構(gòu)成直角三角形;③在圓臺(tái)的上、下兩底面圓周上各取一點(diǎn),則這兩點(diǎn)的連線是圓臺(tái)的母線;④圓柱的隨意兩條母線所在的直線是相互平行的.其中正確的是()A.①② B.②③C.①③ D.②④(1)C(2)D[(1)由圓錐的概念知,直角三角形繞它的一條直角邊所在直線旋轉(zhuǎn)一周所圍成的幾何體是圓錐.強(qiáng)調(diào)肯定要圍著它的一條直角邊,即旋轉(zhuǎn)軸為直角三角形的一條直角邊所在的直線,因而C錯(cuò).(2)由圓柱、圓錐、圓臺(tái)的定義及母線的性質(zhì)可知②④正確,①③錯(cuò)誤.]簡(jiǎn)潔旋轉(zhuǎn)體推斷問題的解題策略1精確駕馭圓柱、圓錐、圓臺(tái)和球的生成過程及其結(jié)構(gòu)特征是解決此類概念問題的關(guān)鍵.2解題時(shí)要留意兩個(gè)明確:①明確由哪個(gè)平面圖形旋轉(zhuǎn)而成.②明確旋轉(zhuǎn)軸是哪條直線.eq\o([跟進(jìn)訓(xùn)練])1.(多選題)下列說法正確的是()A.圓柱的底面是圓面B.經(jīng)過圓柱隨意兩條母線的截面是一個(gè)矩形面C.圓臺(tái)的隨意兩條母線的延長線可能相交,也可能不相交D.夾在圓柱的兩個(gè)截面間的幾何體還是一個(gè)旋轉(zhuǎn)體AB[A正確,圓柱的底面是圓面;B正確,如圖所示,經(jīng)過圓柱隨意兩條母線的截面是一個(gè)矩形面;C不正確,圓臺(tái)的母線延長相交于一點(diǎn);D不正確,夾在圓柱兩個(gè)平行于底面的截面間的幾何體才是旋轉(zhuǎn)體.]簡(jiǎn)潔組合體的結(jié)構(gòu)特征【例2】如圖①②所示的圖形繞虛線旋轉(zhuǎn)一周后形成的立體圖形分別是由哪些簡(jiǎn)潔幾何體組成的?[思路探究]先將平面圖形割補(bǔ)成三角形、梯形、矩形,再旋轉(zhuǎn)識(shí)別幾何體.[解]旋轉(zhuǎn)后的圖形如圖所示.其中圖①是由一個(gè)圓柱O1O2和兩個(gè)圓臺(tái)O2O3,O3O4組成的;圖②是由一個(gè)圓錐O5O4,一個(gè)圓柱O3O4及一個(gè)圓臺(tái)O1O3中挖去圓錐O2O1組成的.旋轉(zhuǎn)體形態(tài)的推斷方法1推斷旋轉(zhuǎn)體形態(tài)的關(guān)鍵是軸的確定,看是由平面圖形繞哪條直線旋轉(zhuǎn)所得,同一個(gè)平面圖形繞不同的軸旋轉(zhuǎn),所得的旋轉(zhuǎn)體一般是不同的.2在旋轉(zhuǎn)過程中視察平面圖形的各邊所形成的軌跡,應(yīng)利用空間想象實(shí)力,或親自動(dòng)手做出平面圖形的模型來分析旋轉(zhuǎn)體的形態(tài).3要嫻熟駕馭各類旋轉(zhuǎn)體的結(jié)構(gòu)特征.eq\o([跟進(jìn)訓(xùn)練])2.如圖,AB為圓弧BC所在圓的直徑,∠BAC=45°.將這個(gè)平面圖形繞直線AB旋轉(zhuǎn)一周,得到一個(gè)組合體,試說明這個(gè)組合體的結(jié)構(gòu)特征.[解]如圖所示,這個(gè)組合體是由一個(gè)圓錐和一個(gè)半球體拼接而成的.幾何體中的計(jì)算問題[探究問題]1.圓柱、圓錐、圓臺(tái)平行于底面的截面是什么樣的圖形?[提示]圓面.2.圓柱、圓錐、圓臺(tái)過軸的截面是什么樣的圖形?[提示]分別為矩形、等腰三角形、等腰梯形.3.經(jīng)過圓臺(tái)的隨意兩條母線作截面,截面是什么圖形?[提示]因?yàn)閳A臺(tái)可以看成是圓錐被平行于底面的平面所截得到的幾何體,所以隨意兩條母線長度均相等,且延長后相交,故經(jīng)過這兩條母線的截面是以這兩條母線為腰的等腰梯形.【例3】如圖所示,用一個(gè)平行于圓錐SO底面的平面截這個(gè)圓錐,截得圓臺(tái)上、下底面的面積之比為1∶16,截去的圓錐的母線長是3cm,求圓臺(tái)O′O的母線長.[思路探究]過圓錐的軸作截面圖,利用三角形相像解決.

[解]設(shè)圓臺(tái)的母線長為lcm,由截得的圓臺(tái)上、下底面面積之比為1∶16,可設(shè)截得的圓臺(tái)的上、下底面的半徑分別為r,4r,過軸SO作截面,如圖所示.則△SO′A′∽△SOA,SA′=3cm.所以eq\f(SA′,SA)=eq\f(O′A′,OA),所以eq\f(3,3+l)=eq\f(r,4r)=eq\f(1,4).解得l=9(cm),即圓臺(tái)的母線長為9cm.1.把本例的條件換為“圓臺(tái)兩底面半徑分別是2cm和5cm,母線長是3eq\r(10)cm”,則它的軸截面的面積是________.63cm2[畫出軸截面,如圖,過A作AM⊥BC于M,則BM=5-2=3(cm),AM=eq\r(AB2-BM2)=9(cm),所以S四邊形ABCD=eq\f(4+10×9,2)=63(cm2).]2.把本例的條件換為“一圓錐的母線長為6cm,底面半徑為3cm,把該圓錐截一圓臺(tái),截得圓臺(tái)的母線長為4cm”,則圓臺(tái)的另一底面半徑為________cm.1[作軸截面如圖,則eq\f(r,3)=eq\f(6-4,6)=eq\f(1,3),所以r=1cm.]1.簡(jiǎn)潔旋轉(zhuǎn)體的軸截面及其應(yīng)用(1)簡(jiǎn)潔旋轉(zhuǎn)體的軸截面中有底面半徑、母線、高等體現(xiàn)簡(jiǎn)潔旋轉(zhuǎn)體結(jié)構(gòu)特征的關(guān)鍵量.(2)在軸截面中解決簡(jiǎn)潔旋轉(zhuǎn)體問題體現(xiàn)了化空間圖形為平面圖形的轉(zhuǎn)化思想.2.與圓錐有關(guān)的截面問題的解決策略(1)畫出圓錐的軸截面.(2)在軸截面中借助直角三角形或三角形的相像關(guān)系建立高、母線長、底面圓的半徑長的等量關(guān)系,求解便可.一、學(xué)問必備圓柱、圓錐、圓臺(tái)的關(guān)系如圖所示:二、方法必備1.處理臺(tái)體問題常采納還臺(tái)為錐的補(bǔ)體思想.2.處理組合體問題常采納分割思想.3.重視圓柱、圓錐、圓臺(tái)的軸截面在解決幾何量中的特別作用,切實(shí)體會(huì)空間幾何平面化的思想.1.圓柱的母線長為10,則其高等于()A.5 B.10C.20 D.不確定B[圓柱的母線長和高相等.]2.下面幾何體的截面肯定是圓面的是()A.圓臺(tái) B.球C.圓柱 D.棱柱B[截面可以從各個(gè)不同的部位截取,截得的截面都是圓面的幾何體只有球.]3.如圖是由哪個(gè)平面圖形旋轉(zhuǎn)得到的()A[題圖中幾何體由圓錐、圓臺(tái)組合而成,可由A中圖形繞

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論