![2025屆呼和浩特市重點中學數(shù)學高二上期末監(jiān)測試題含解析_第1頁](http://file4.renrendoc.com/view14/M01/12/07/wKhkGWcfwx6AK6iTAAIO_gWhdIo162.jpg)
![2025屆呼和浩特市重點中學數(shù)學高二上期末監(jiān)測試題含解析_第2頁](http://file4.renrendoc.com/view14/M01/12/07/wKhkGWcfwx6AK6iTAAIO_gWhdIo1622.jpg)
![2025屆呼和浩特市重點中學數(shù)學高二上期末監(jiān)測試題含解析_第3頁](http://file4.renrendoc.com/view14/M01/12/07/wKhkGWcfwx6AK6iTAAIO_gWhdIo1623.jpg)
![2025屆呼和浩特市重點中學數(shù)學高二上期末監(jiān)測試題含解析_第4頁](http://file4.renrendoc.com/view14/M01/12/07/wKhkGWcfwx6AK6iTAAIO_gWhdIo1624.jpg)
![2025屆呼和浩特市重點中學數(shù)學高二上期末監(jiān)測試題含解析_第5頁](http://file4.renrendoc.com/view14/M01/12/07/wKhkGWcfwx6AK6iTAAIO_gWhdIo1625.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆呼和浩特市重點中學數(shù)學高二上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.△ABC的兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.2.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.3.總體由編號為的30個個體組成.利用所給的隨機數(shù)表選取6個個體,選取的方法是從隨機數(shù)表第1行的第3列和第4列數(shù)字開始,由左到右一次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.20 B.26C.17 D.034.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六5.若存在兩個不相等的正實數(shù)x,y,使得成立,則實數(shù)m的取值范圍是()A. B.C. D.6.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-37.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.8.已知函數(shù),,若對于任意的,存在唯一的,使得,則實數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]9.如圖,在正方體中,,,,若為的中點,在上,且,則等于()A. B.C. D.10.在下列命題中正確的是()A.已知是空間三個向量,則空間任意一個向量總可以唯一表示為B.若所在的直線是異面直線,則不共面C.若三個向量兩兩共面,則共面D.已知A,B,C三點不共線,若,則A,B,C,D四點共面11.過點且平行于直線的直線的方程為()A. B.C. D.12.如圖給出的是一道典型的數(shù)學無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學提出了以下結(jié)論,其中正確的是()A.由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.14.已知直線與圓交于,兩點,則的最小值為___________.15.一個六棱錐的體積為,其底面是邊長為的正六邊形,側(cè)棱長都相等,則該六棱錐的側(cè)面積為.16.已知滿足約束條件,則的最小值為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點是拋物線C:上的點,F(xiàn)為拋物線的焦點,且,直線l:與拋物線C相交于不同的兩點A,B.(1)求拋物線C的方程;(2)若,求k的值.18.(12分)在棱長為的正方體中,、分別為線段、的中點.(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.19.(12分)已知拋物線C的頂點在坐標原點,焦點在x軸上,點在拋物線C上(1)求拋物線C的方程;(2)過拋物線C焦點F的直線l交拋物線于P,Q兩點,若求直線l的方程20.(12分)如圖,在四棱柱中,側(cè)棱底面,,,,,,,()(1)求證:平面;(2)若直線與平面所成角的正弦值為,求的值;(3)現(xiàn)將與四棱柱形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式.(直接寫出答案,不必說明理由)21.(12分)記為數(shù)列的前項和,且(1)求的通項公式;(2)設(shè),求數(shù)列的前項和22.(10分)已知,,(1)若,為真命題,為假命題,求實數(shù)x的取值范圍;(2)若是的充分不必要條件,求實數(shù)m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎(chǔ)題.2、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.3、D【解析】根據(jù)題目要求選取數(shù)字,在30以內(nèi)的正整數(shù)符合要求,不在30以內(nèi)的不合要求,舍去,與已經(jīng)選取過重復的舍去,找到第5個個體的編號.【詳解】已知選取方法為從第一行的第3列和第4列數(shù)字開始,由左到右一次選取兩個數(shù)字,所以選取出來的數(shù)字分別為12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(與前面重復,不合要求),89(不合要求),51(不合要求),03(符合要求),故選出來的第5個個體的編號為03.故選:D4、C【解析】求出二項式定理的通項公式,得到除以7余數(shù)是1,然后利用周期性進行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:5、D【解析】將給定等式變形并構(gòu)造函數(shù),由函數(shù)的圖象與垂直于y軸的直線有兩個公共點推理作答.【詳解】因,令,則存在兩個不相等的正實數(shù)x,y,使得,即存在垂直于y軸的直線與函數(shù)的圖象有兩個公共點,,,而,當時,,函數(shù)在上單調(diào)遞增,則垂直于y軸的直線與函數(shù)的圖象最多只有1個公共點,不符合要求,當時,由得,當時,,當時,,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,令,,令,則,即在上單調(diào)遞增,,即,在上單調(diào)遞增,則有當時,,,而函數(shù)在上單調(diào)遞增,取,則,而,因此,存在垂直于y軸的直線(),與函數(shù)的圖象有兩個公共點,所以實數(shù)m的取值范圍是.故選:D【點睛】思路點睛:涉及雙變量的等式或不等式問題,把雙變量的等式或不等式轉(zhuǎn)化為一元變量問題求解,途徑都是構(gòu)造一元函數(shù).6、C【解析】由等差數(shù)列的通項公式計算【詳解】因為,,所以.故選:C【點睛】本題考查等差數(shù)列的通項公式,利用等差數(shù)列通項公式可得,7、A【解析】求出的最小值,由切線長公式可結(jié)論【詳解】解:由,得最小時,最小,而,所以故選:A.8、B【解析】結(jié)合導數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結(jié)合已知條件可得,,從而可求出實數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當時,,由時,,時,,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因為開口向下,對稱軸為軸,又,所以當時,,當時,,則函數(shù)在[,2]上的值域為[a–4,a],且函數(shù)f(x)在,圖象關(guān)于軸對稱,在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點睛】本題考查了利用導數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點是這一條件的轉(zhuǎn)化.9、B【解析】利用空間向量的加減法、數(shù)乘運算推導即可.【詳解】.故選:B.10、D【解析】對于A,利用空間向量基本定理判斷,對于B,利用向量的定義判斷,對于C,舉例判斷,對于D,共面向量定理判斷【詳解】對于A,若三個向量共面,在平面,則空間中不在平面的向量不能用表示,所以A錯誤,對于B,因為向量是自由向量,是可以自由平移,所以當所在的直線是異面直線時,有可能共面,所以B錯誤,對于C,當三個向量兩兩共面時,如空間直角坐標系中的3個基向量兩兩共面,但這3個向量不共面,所以C錯誤,對于D,因為A,B,C三點不共線,,且,所以A,B,C,D四點共面,所以D正確,故選:D11、B【解析】根據(jù)平行設(shè)直線方程,代入點計算得到答案.【詳解】設(shè)直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.12、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設(shè)每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)點關(guān)于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設(shè)點關(guān)于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.14、【解析】先求出直線經(jīng)過的定點,再求出圓心到定點的距離,數(shù)形結(jié)合即得解.【詳解】由題得,所以直線經(jīng)過定點,圓的圓心為,半徑為.圓心到定點的距離為,當時,取得最小值,且最小值為.故答案為:815、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側(cè)面積∵一個六棱錐的體積為,其底面是邊長為2的正六邊形,側(cè)棱長都相等,∴棱錐是正六棱錐,設(shè)棱錐的高為h,則棱錐斜高為該六棱錐的側(cè)面積為考點:棱柱、棱錐、棱臺的體積16、【解析】根據(jù)題意,作出可行域,進而根據(jù)幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據(jù)幾何意義,當直線過點時,有最小值,所以聯(lián)立方程得,所以的最小值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)1或.【解析】(1)根據(jù)拋物線的定義,即可求得p值;(2)由過拋物線焦點的直線的性質(zhì),結(jié)合拋物線的定義,即可求出弦長AB【詳解】(1)拋物線C:的準線為,由得:,得.所以拋物線的方程為.(2)設(shè),,由,,∴,∵直線l經(jīng)過拋物線C的焦點F,∴解得:,所以k的值為1或.【點睛】考核拋物線的定義及過焦點弦的求法18、(1);(2).【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因為平面,所以,平面,,所以,直線到平面的距離為.19、(1)(2)或【解析】(1)把點的坐標代入方程即可;(2)設(shè)直線方程,解聯(lián)立方程組,消未知數(shù),得到一元二次方程,再利用韋達定理和已知條件求斜率.【小問1詳解】因為拋物線C的頂點在原點,焦點在x軸上,所以設(shè)拋物線方程為又因為點在拋物線C上,所以,解得,所以拋物線的方程為;【小問2詳解】拋物線C的焦點為,當直線l的斜率不存在時,,不符合題意;當直線l的斜率存在時,設(shè)直線l的方程為,設(shè)直線l交拋物線的兩點坐標為,,由得,,,,由拋物線得定義可知,所以,解得,即,所以直線l的方程為或20、(1)證明見解析(2)(3)【解析】(1)取得中點,連接,可證明四邊形是平行四邊形,再利用勾股定理的逆定理可得,即,又側(cè)棱底面,可得,利用線面垂直的判定定理即可證明;(2)通過建立空間直角坐標系,由線面角的向量公式即可得出;(3)由題意可與左右平面,,上或下面,拼接得到方案,新四棱柱共有此4種不同方案.寫出每一方案下的表面積,通過比較即可得出【詳解】(1)證明:取的中點,連接,,,四邊形是平行四邊形,,且,,,,又,側(cè)棱底面,,,平面(2)以為坐標原點,、、的方向為軸的正方向建立空間直角坐標系,則,,,,,設(shè)平面的一個法向量為,則,取,則,設(shè)與平面所成角為,則,解得,故所求(3)由題意可與左右平面,,上或下面,拼接得到方案新四棱柱共有此4種不同方案寫出每一方案下的表面積,通過比較即可得出【點睛】本題主要考查線面垂直的判定定理的應(yīng)用,利用向量求線面角、柱體的定義應(yīng)用和表面積的求法,意在考查學生的直觀想象能力,邏輯推理能力,數(shù)學運算能力及化歸與轉(zhuǎn)化能力,屬于中檔題21、(1)(2)【解析】(1)利用,再結(jié)合等比數(shù)列的概念,即可求出結(jié)果;(2)由(1)可知數(shù)列是以為首項,公差為的等差數(shù)列,根據(jù)等差數(shù)列的前項和公式,即可求出結(jié)果.【小問1詳解】解:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球鍍銅光亮劑行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國母嬰健康產(chǎn)后護理行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國敏捷滲透測試行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國LTCC用導電銀漿行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025建筑安裝工程承包合同范本版
- 教室租賃合同范本
- 2025工礦企業(yè)大型成套設(shè)備采購合同范本
- 裝修設(shè)計合同范本大全
- 2025勞動合同試用期法律疑難問題詳解
- 門店合伙協(xié)議合同范本
- 2024年1月高考適應(yīng)性測試“九省聯(lián)考”數(shù)學 試題(學生版+解析版)
- JT-T-1004.1-2015城市軌道交通行車調(diào)度員技能和素質(zhì)要求第1部分:地鐵輕軌和單軌
- (高清版)WST 408-2024 定量檢驗程序分析性能驗證指南
- (正式版)JBT 11270-2024 立體倉庫組合式鋼結(jié)構(gòu)貨架技術(shù)規(guī)范
- DB11∕T 2035-2022 供暖民用建筑室溫無線采集系統(tǒng)技術(shù)要求
- 《復旦大學》課件
- 針灸與按摩綜合療法
- Photoshop 2022從入門到精通
- T-GDWJ 013-2022 廣東省健康醫(yī)療數(shù)據(jù)安全分類分級管理技術(shù)規(guī)范
- 校本課程生活中的化學
- DB43-T 2775-2023 花櫚木播種育苗技術(shù)規(guī)程
評論
0/150
提交評論