版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省丹東市鳳城市2025屆數(shù)學(xué)高二上期末考試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與拋物線C:相交于A,B兩點,O為坐標(biāo)原點,,的斜率分別為,,則()A. B.C. D.2.已知圓,圓,M,N分別是圓上的動點,P為x軸上的動點,則以的最小值為()A B.C. D.3.點F是拋物線的焦點,點,P為拋物線上一點,P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.4.“”是“直線與直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥06.已知雙曲線的左、右焦點分別為,,為坐標(biāo)原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.7.已知關(guān)于x的不等式的解集為空集,則的最小值為()A. B.2C. D.48.如圖,過拋物線的焦點的直線交拋物線于點,,交其準(zhǔn)線于點,準(zhǔn)線與對稱軸交于點,若,且,則此拋物線的方程為()A. B.C. D.9.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.10.設(shè),若,則()A. B.C. D.11.已知拋物線x2=4y上有一條長為6的動弦AB,則AB的中點到x軸的最短距離為()A. B.C.1 D.212.120°的二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB.已知,,,則CD的長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知過點作拋物線的兩條切線,切點分別為A、B,直線經(jīng)過拋物線C的焦點F,則___________14.已知橢圓的左、右焦點為,過作x軸垂線交橢圓于點P,若為等腰直角三角形,則橢圓的離心率是___________.15.已知雙曲線,(,)的左右焦點分別為,過的直線與圓相切,與雙曲線在第四象限交于一點,且有軸,則直線的斜率是___________,雙曲線的漸近線方程為___________.16.復(fù)數(shù)的共軛復(fù)數(shù)是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C:的半徑為1(1)求實數(shù)a的值;(2)判斷直線l:與圓C是否相交?若不相交,請說明理由;若相交,請求出弦長18.(12分)已知數(shù)列,若_________________(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和從下列三個條件中任選一個補(bǔ)充在上面的橫線上,然后對題目進(jìn)行求解①;②,,;③,點,在斜率是2的直線上19.(12分)已知拋物線,過點作直線(1)若直線的斜率存在,且與拋物線只有一個公共點,求直線的方程(2)若直線過拋物線的焦點,且交拋物線于兩點,求弦長20.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點,且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積21.(12分)已知等差數(shù)列前n項和為,,,若對任意的正整數(shù)n成立,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)當(dāng)時,討論的單調(diào)性;(2)當(dāng)時,,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè),,由消得:,又,由韋達(dá)定理代入計算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.2、A【解析】求出圓關(guān)于軸的對稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸對稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為3,易知,當(dāng)三點共線時,取得最小值,的最小值為圓與圓的圓心距減去兩個圓的半徑和,即:.故選:A.注意:9至12題為多選題3、C【解析】由拋物線的定義轉(zhuǎn)化后求距離最值【詳解】拋物線的焦點,準(zhǔn)線為過點作準(zhǔn)線于點,故△PAF的周長為,,可知當(dāng)三點共線時周長最小,為故選:C4、A【解析】求出兩直線垂直的充要條件后再根據(jù)充分必要條件的定義判斷.【詳解】由,得,即或所以,反之,則不然所以“”是“直線與直線垂直”的充分不必要條件.故選:A5、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.6、D【解析】由雙曲線的定義可設(shè),,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結(jié)合雙曲線性質(zhì)可以得到,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故,對三角形,用余弦定理,得到,結(jié)合,可得,,,代入上式子中,得到,即,結(jié)合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.7、D【解析】根據(jù)一元二次不等式的解集的情況得出二次項系數(shù)大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當(dāng)且僅當(dāng)取等號,所以的最小值為4.故答案為:4.【點睛】本題主要考查均值不等式,關(guān)鍵在于由一元二次不等式的解集的情況得出的關(guān)系,再將所求的式子運(yùn)用不等式的性質(zhì)降低元的個數(shù),運(yùn)用均值不等式,是中檔題.8、B【解析】根據(jù)拋物線定義,結(jié)合三角形相似以及已知條件,求得,則問題得解.【詳解】根據(jù)題意,過作垂直于準(zhǔn)線,垂足為,過作垂直于準(zhǔn)線,垂足為,如下所示:因為,又//,,則,故可得,又△△,則,即,解得,故拋物線方程為:.故選:.9、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當(dāng)且僅當(dāng),即時取等號,所以故選:D10、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【詳解】因為,且,所以.所以,,所以.故選:B11、D【解析】由題意知,拋物線的準(zhǔn)線l:y=-1,過A作AA1⊥l于A1,過B作BB1⊥l于B1,設(shè)弦AB的中點為M,過M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.12、B【解析】由,把展開整理求解【詳解】由已知可得:,,,,=41,∴.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、64【解析】用字母進(jìn)行一般化研究,先求出切點弦方程,再聯(lián)立化簡,最后代入數(shù)據(jù)計算【詳解】設(shè),點處的切線方程為聯(lián)立,得由,得即,解得所以點處的切線方程為,整理得同理,點處的切線方程為設(shè)為兩切線的交點,則所以在直線上即直線AB的方程為又直線AB經(jīng)過焦點所以,即聯(lián)立得所以所以本題中所以故答案為:64【點睛】結(jié)論點睛:過點作拋物線的兩條切線,切點弦的方程為14、##【解析】以為等腰直角三角形列方程組可得之間的關(guān)系式,進(jìn)而求得橢圓的離心率.【詳解】橢圓的左、右焦點為,點P由為等腰直角三角形可知,,即可化為,故或(舍)故答案為:15、①.②.【解析】由題意,不妨設(shè)直線與圓相切于點,由可得,代入雙曲線方程,可得,因此,即得解【詳解】如圖所示,不妨設(shè)直線與圓相切于點,,由于代入進(jìn)入,可得,漸近線方程為故答案為:,16、【解析】利用復(fù)數(shù)除法化簡,由共軛復(fù)數(shù)的概念寫出即可.【詳解】,∴.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)直線l與圓C相交,.【解析】(1)利用配方法進(jìn)行求解即可;(2)根據(jù)點到直線距離公式,結(jié)合圓的弦長公式進(jìn)行求解即可.【小問1詳解】將化為標(biāo)準(zhǔn)方程得:因為圓C的半徑為1,所以,得【小問2詳解】由(1)知圓C的圓心為,半徑為1設(shè)圓心C到直線l的距離為d,則,所以直線l與圓C相交,設(shè)其交點為A,B,則,即18、答案見解析.【解析】(1)若選①,根據(jù)通項公式與前項和的關(guān)系求解通項公式即可;若選②,根據(jù)可得數(shù)列為等差數(shù)列,利用基本量法求解通項公式即可;若選③,根據(jù)兩點間的斜率公式可得,可得數(shù)列為等差數(shù)列進(jìn)而求得通項公式;(2)利用裂項相消求和即可【詳解】解:(1)若選①,由,所以當(dāng),,兩式相減可得:,而在中,令可得:,符合上式,故若選②,由(,)可得:數(shù)列為等差數(shù)列,又因為,,所以,即,所以若選③,由點,在斜率是2的直線上得:,即,所以數(shù)列為等差數(shù)列且(2)由(1)知:,所以19、(1)或;(2)8【解析】(1)根據(jù)題意設(shè)直線的方程為,聯(lián)立,消去得,因為只有一個公共點,則求解.(2)拋物線的焦點為,設(shè)直線的方程為,聯(lián)立,消去得,再根據(jù)過拋物線焦點的弦長公式求解.【詳解】(1)設(shè)直線的方程為,聯(lián)立,消去得,則,解得或,∴直線的方程為:或(2)拋物線的焦點為,則直線的方程為,設(shè),聯(lián)立,消去得,∴,∴【點睛】本題主要考查直線與拋物線的位置關(guān)系,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點M到平面PAD的距離等于點B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.21、【解析】設(shè)等差數(shù)列的公差為,根據(jù)題意得,解方程得,,進(jìn)而得,故恒成立,再結(jié)合二次函數(shù)的性質(zhì)得當(dāng)或4時,取得最小值,進(jìn)而得答案.【詳解】解:設(shè)等差數(shù)列的公差為,由已知,.聯(lián)立方程組,解得,.所以,,由題意,即.令,其圖象為開口向上的拋物線,對稱軸為,所以當(dāng)或4時,取得最小值,所以實數(shù)的取值范圍是.22、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)【解析】(1)研究當(dāng)時的導(dǎo)數(shù)的符號即可討論得到的單調(diào)性;(2)對原函數(shù)求導(dǎo),對a的范圍分類討論即可得出答案.【小問1詳解】當(dāng)時,,令,則,所以在上單調(diào)遞增.又因為,所以當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】,且.①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)語文經(jīng)典美文千山筆記
- 2024二手房購房定金合同范本二手房購房合同范本
- 2024賒欠買賣貨物合同樣書
- 2024裝飾維修合同范本
- 2024《電大合同法網(wǎng)考》
- 2024理財合同可信范文
- 深圳大學(xué)《中國音樂史(中國流行音樂史)》2021-2022學(xué)年第一學(xué)期期末試卷
- 深圳大學(xué)《醫(yī)學(xué)統(tǒng)計學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 殯葬用品銷售合同(2篇)
- 騎車轉(zhuǎn)讓買賣協(xié)議書(2篇)
- 醫(yī)院對口支援月度工作統(tǒng)計表
- 物業(yè)環(huán)境因素識別評價表
- 材料進(jìn)場檢驗項目清單
- 《日語古典文法》課程教學(xué)大綱
- 肢體離斷傷的護(hù)理查房
- 初中生不可不讀的經(jīng)典英語美文范文
- 藍(lán)海華騰變頻器說明書
- 陶瓷廠工藝設(shè)計42
- 頸椎病科普知識講座課件(PPT 45頁)
- 第2課 色彩的感染力 (5) 教案 初中美術(shù)人教版八年級上冊(2021-2022)
- 幼兒園家園共育培訓(xùn)PPT課件
評論
0/150
提交評論