




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省涉縣一中2025屆高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在正三棱錐中,,點為棱的中點,則異面直線與所成角的大小為()A.30° B.45°C.60° D.90°2.關于函數(shù)的敘述中,正確的有()①的最小正周期為;②在區(qū)間內(nèi)單調(diào)遞增;③是偶函數(shù);④的圖象關于點對稱.A.①③ B.①④C.②③ D.②④3.已知,則()A. B.C. D.4.已知函數(shù),則的值是A. B.C. D.5.過圓C:(x﹣2)2+(y﹣2)2=4的圓心,作直線分別交x,y正半軸于點A,B,△AOB被圓分成四部分(如圖),若這四部分圖形面積滿足SI+SⅣ=SⅡ+SⅢ,則這樣的直線AB有A.0條 B.1條C.2條 D.3條6.若函數(shù)的零點與的零點之差的絕對值不超過0.25,則可以是A B.C. D.7.圓(x-1)2+(y-1)2=1上的點到直線x-y=2的距離的最大值是()A.2 B.1+C.2+ D.1+8.下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是()A. B.C. D.9.若為所在平面內(nèi)一點,,則形狀是A.等腰三角形 B.直角三角形C.正三角形 D.以上答案均錯10.已知集合,,則集合A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知則_______.12.已知定義域為R的函數(shù),滿足,則實數(shù)a的取值范圍是______13.已知直線過兩直線和的交點,且原點到該直線的距離為,則該直線的方程為_____.14._____________15.已知,若,則_______;若,則實數(shù)的取值范圍是__________16.已知函數(shù)f(x)=①f(5)=______;②函數(shù)f(x)與函數(shù)y=(三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知集合,集合(1)若“”是“”的充分條件,求實數(shù)的取值范圍;(2)若,求實數(shù)的取值范圍.18.設全集為,或,.(1)求,;(2)求.19.已知函數(shù)(1)當時,求的取值范圍;(2)若關于x的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)m的取值范圍20.已知函數(shù),若同時滿足以下條件:①在D上單調(diào)遞減或單調(diào)遞增;②存在區(qū)間,使在上的值域是,那么稱為閉函數(shù)(1)求閉函數(shù)符合條件②的區(qū)間;(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間;若不是請說明理由;(3)若是閉函數(shù),求實數(shù)的取值范圍21.在①;②“”是“”的充分條件:③“”是“”的必要條件,在這三個條件中任選一個,補充到本題第(2)問的橫線處,求解下列問題問題:已知集合,(1)當時,求;(2)若________,求實數(shù)的取值范圍注:如果選擇多個條件分別解答,按第一個解答計分
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】取BC的中點E,∠DFE即為所求,結合條件即求.【詳解】如圖取BC的中點E,連接EF,DE,則EF∥AB,∠DFE即為所求,設,在正三棱錐中,,故,∴,∴,即異面直線與所成角的大小為.故選:C.2、C【解析】應用差角余弦公式、二倍角正余弦公式及輔助角公式可得,再根據(jù)正弦型函數(shù)的性質(zhì),結合各項描述判斷正誤即可.【詳解】,∴最小正周期,①錯誤;令,則在上遞增,顯然當時,②正確;,易知為偶函數(shù),③正確;令,則,,易知的圖象關于對稱,④錯誤;故選:C3、C【解析】先對兩邊平方,構造齊次式進而求出或,再用正切的二倍角公式即可求解.【詳解】解:對兩邊平方得,進一步整理可得,解得或,于是故選:C【點睛】本題考查同角三角函數(shù)關系和正切的二倍角公式,考查運算能力,是中檔題.4、B【解析】直接利用分段函數(shù),求解函數(shù)值即可【詳解】函數(shù),則f(1)+=log210++1=故選B【點睛】本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力5、B【解析】數(shù)形結合分析出為定值,因此為定值,從而確定直線AB只有一條.【詳解】已知圓與軸,軸均相切,由已知條件得,第部分的面積是定值,所以為定值,即為定值,當直線繞著圓心C移動時,只有一個位置符合題意,即直線AB只有一條.故選:B【點睛】本題考查直線與圓的實際應用,屬于中檔題.6、A【解析】因為函數(shù)g(x)=4x+2x-2在R上連續(xù),且,,設函數(shù)的g(x)=4x+2x-2的零點為,根據(jù)零點存在性定理,有,則,所以,又因為f(x)=4x-1的零點為,函數(shù)f(x)=(x-1)2的零點為x=1,f(x)=ex-1的零點為,f(x)=ln(x-0.5)的零點為,符合為,所以選A考點:零點的概念,零點存在性定理7、B【解析】根據(jù)圓心到直線的距離加上圓的半徑即為圓上點到直線距離的最大值求解出結果.【詳解】因為圓心為,半徑,直線的一般式方程為,所以圓上點到直線的最大距離為:,故選:B【點睛】本題考查圓上點到直線的距離的最大值,難度一般.圓上點到直線的最大距離等于圓心到直線的距離加上圓的半徑,最小距離等于圓心到直線的距離減去半徑.8、D【解析】對于A:由定義法判斷出不是奇函數(shù),即可判斷;對于B:判斷出在R上為增函數(shù),即可判斷;對于C:不能說在定義域是減函數(shù),即可判斷;對于D:用圖像法判斷.【詳解】對于A:的定義域為R..所以不是奇函數(shù),故A錯誤;對于B:在R上為增函數(shù).故B錯誤;對于C:在為減函數(shù),在為減函數(shù),但不能說在定義域是減函數(shù).故C錯誤;對于D:,作出圖像如圖所示:所以既是奇函數(shù)又是減函數(shù).故D正確.故選:D9、A【解析】根據(jù)向量的減法運算可化簡已知等式為,從而得到三角形的中線和底邊垂直,從而得到三角形形狀.詳解】三角形的中線和底邊垂直是等腰三角形本題正確選項:【點睛】本題考查求解三角形形狀的問題,關鍵是能夠通過向量的線性運算得到數(shù)量積關系,根據(jù)數(shù)量積為零求得垂直關系.10、B【解析】利用一元二次方程的解法化簡集合化簡集合,利用并集的定義求解即可.【詳解】由一元二次方程的解法化簡集合,或,,或,故選B.【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉化為元素間的關系,本題實質(zhì)求滿足屬于集合或屬于集合的元素的集合.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因為,所以12、【解析】先判斷函數(shù)奇偶性,再判斷函數(shù)的單調(diào)性,從而把條件不等式轉化為簡單不等式.【詳解】由函數(shù)定義域為R,且,可知函數(shù)為奇函數(shù).,令則,令則即在定義域R上單調(diào)遞增,又,由此可知,當時,即,函數(shù)即為減函數(shù);當時,即,函數(shù)即為增函數(shù),故函數(shù)在R上的最小值為,可知函數(shù)在定義域為R上為增函數(shù).根據(jù)以上兩個性質(zhì),不等式可化為,不等式等價于即解之得或故答案為13、或【解析】先求兩直線和的交點,再分類討論,先分析所求直線斜率不存在時是否符合題意,再分析直線斜率存在時,設斜率為,再由原點到該直線的距離為,求出,得到答案.【詳解】由和,得,即交點坐標為,(1)當所求直線斜率不存在時,直線方程為,此時原點到直線的距離為,符合題意;(2)當所求直線斜率存在時,設過該點的直線方程為,化為一般式得,由原點到直線的距離為,則,解得,得所求直線的方程為.綜上可得,所求直線的方程為或故答案為:或【點睛】本題考查了求兩直線的交點坐標,由點到直線的距離求參,還考查了對直線的斜率是否存在分類討論的思想,屬于中檔題.三、14、【解析】利用指數(shù)與對數(shù)的運算性質(zhì),進行計算即可【詳解】.【點睛】本題考查了指數(shù)與對數(shù)的運算性質(zhì),需要注意,屬于基礎題15、①.②.【解析】先判斷函數(shù)的奇偶性,由求解;再根據(jù)函數(shù)的單調(diào)性,由求解.【詳解】因為的定義域為R,且,,所以是奇函數(shù),又,則-2;因為在上是增函數(shù),所以在上是增函數(shù),又是R上的奇函數(shù),所以在R上遞增,且,所以由,得,即,所以,解得或,所以實數(shù)的取值范圍是,故答案為:,16、①.-14【解析】①根據(jù)函數(shù)解析式,代值求解即可;②在同一直角坐標系中畫出兩個函數(shù)的圖象,即可數(shù)形結合求得結果.【詳解】①由題可知:f5②根據(jù)f(x)的解析式,在同一坐標系下繪制f(x)與y=(數(shù)形結合可知,兩個函數(shù)有3個交點.故答案為:-14;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由已知可得,可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍;(2)分、兩種情況討論,根據(jù)可得出關于實數(shù)的不等式(組),綜合可得出實數(shù)的取值范圍.【小問1詳解】解:由已知得,故有,解得,故的取值范圍為.【小問2詳解】解:當時,則,解得;當時,則或,解得.∴的取值范圍為.18、(1)或,(2)或【解析】(1)根據(jù)集合的交集和并集的定義即可求解;(2)先根據(jù)補集的定義求出,然后再由交集的定義即可求解.【小問1詳解】解:因為或,,所以或,;【小問2詳解】解:因為全集為,或,,所以或,所以或.19、(1)(2)【解析】(1)首先利用三角恒等變換公式化簡函數(shù)解析式,再根據(jù)的取值范圍,求出的取值范圍,最后根據(jù)正弦函數(shù)的性質(zhì)計算可得;(2)依題意可得,再由(1)及正弦函數(shù)的性質(zhì)計算可得;【小問1詳解】解:因為即∵,∴,∴,∴,故的取值范圍為【小問2詳解】解:∵,∴由(1)知,∵有兩個不同的實數(shù)根,因為在上單調(diào)遞增,在上單調(diào)遞減,且當時,由正弦函數(shù)圖象可知,解得,故實數(shù)的取值范圍是20、(1),;(2)見解析;(3)【解析】(1)由在R上單減,列出方程組,即可求的值;(2)由函數(shù)y=2x+lgx在(0,+∞)單調(diào)遞增可知即,結合對數(shù)函數(shù)的單調(diào)性可判斷(3)易知在[﹣2,+∞)上單調(diào)遞增.設滿足條件B的區(qū)間為[a,b],則方程組有解,方程至少有兩個不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根.結合二次方程的實根分布可求k的范圍【詳解】解:(1)∵在R上單減,所以區(qū)間[a,b]滿足,解得a=﹣1,b=1(2)∵函數(shù)y=2x+lgx在(0,+∞)單調(diào)遞增假設存在滿足條件的區(qū)間[a,b],a<b,則,即∴l(xiāng)gx=﹣x在(0,+∞)有兩個不同的實數(shù)根,但是結合對數(shù)函數(shù)的單調(diào)性可知,y=lgx與y=﹣x只有一個交點故不存在滿足條件的區(qū)間[a,b],函數(shù)y=2x+lgx是不是閉函數(shù)(3)易知在[﹣2,+∞)上單調(diào)遞增設滿足條件B的區(qū)間為[a,b],則方程組有解,方程至少有兩個不同的解即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根∴得,即所求【點睛】本題主要考查了函數(shù)的單調(diào)性的綜合應用,函數(shù)與方程的綜合應用問題,其中解答中根據(jù)函數(shù)與方程的交點相互轉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 志愿者培訓課程
- 學院師德師風培訓
- 2025至2030年中國醚用精制棉行業(yè)投資前景及策略咨詢報告
- 新生兒低體溫護理
- 充電雨棚施工方案
- 氨基環(huán)己烷與環(huán)氧樹脂
- 2024校友返?;顒有侣劯?/a>
- 2024南京高三第二次模擬考試語文
- 鳳城雨棚施工方案
- 2025中介合同范本
- ISO 55013-2024 資產(chǎn)管理-數(shù)據(jù)資產(chǎn)管理指南(中文版-雷澤佳翻譯-2024)
- 2024版年度經(jīng)濟法基礎完整全套課件
- 建筑裝飾裝修分部工程需復檢項目清單
- MOOC 心理學與生活-華東師范大學 中國大學慕課答案
- 教科版小學二年級科學下冊教案(全冊)
- 浙江省溫州市瑞安市五校聯(lián)考2023-2024學年七年級下學期4月期中考試數(shù)學試題
- 醫(yī)療器械安全知識培訓
- 2024年度-小米米家智能家居入門指南
- 中小學安全管理員培訓
- 攝影基礎知識入門與技術
- 從局部到整體:5G系統(tǒng)觀-完整版
評論
0/150
提交評論