版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省凌源市第三中學(xué)2025屆高二上數(shù)學(xué)期末經(jīng)典試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點是正方體的底面內(nèi)(包括邊界)的動點.給出下列三個結(jié)論:①滿足的點有且只有個;②滿足的點有且只有個;③滿足平面的點的軌跡是線段.則上述結(jié)論正確的個數(shù)是()A. B.C. D.2.公元前6世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派研究發(fā)現(xiàn)了黃金分割,簡稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.3.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.4.傾斜角為45°,在y軸上的截距為2022的直線方程是()A. B.C. D.5.已知數(shù)列的通項公式為,且數(shù)列是遞增數(shù)列,則實數(shù)的取值范圍是()A. B.C. D.6.已知雙曲線:()的離心率為,則的漸近線方程為()A. B.C. D.7.某高中學(xué)校高二和高三年級共有學(xué)生人,為了解該校學(xué)生的視力情況,現(xiàn)采用分層抽樣的方法從三個年級中抽取一個容量為的樣本,其中高一年級抽取人,則高一年級學(xué)生人數(shù)為()A. B.C. D.8.已知雙曲線(,)的左,右焦點分別為,.若雙曲線右支上存在點,使得與雙曲線的一條漸近線垂直并相交于點,且,則雙曲線的漸近線方程為()A. B.C. D.9.如圖,在四棱錐中,底面ABCD是平行四邊形,已知,,,,則()A. B.C. D.10.已知直線與圓相交于兩點,當(dāng)?shù)拿娣e最大時,的值是()A. B.C. D.11.已知直線l:的傾斜角為,則()A. B.1C. D.-112.設(shè)拋物線的焦點為F,準(zhǔn)線為l,P為拋物線上一點,,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.8二、填空題:本題共4小題,每小題5分,共20分。13.將某校全體高一年級學(xué)生期末數(shù)學(xué)成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學(xué)生進行問卷調(diào)查,采用按成績分層隨機抽樣,則應(yīng)抽取成績不少于60分的學(xué)生人數(shù)為_______________.14.如圖,某河流上有一座拋物線形的拱橋,已知橋的跨度米,高度米(即橋拱頂?shù)交诘闹本€的距離).由于河流上游降雨,導(dǎo)致河水從橋的基座處開始上漲了1米,則此時橋洞中水面的寬度為______米15.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______16.如圖,甲站在水庫底面上的點處,乙站在水壩斜面上的點處,已知庫底與水壩斜面所成的二面角為,測得從,到庫底與水壩斜面的交線的距離分別為,,若,則甲,乙兩人相距________________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的展開式中前三項的二項式系數(shù)之和為46,(1)求n;(2)求展開式中系數(shù)最大的項18.(12分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點,是C上一點,且,求C的方程.19.(12分)已知各項均為正數(shù)的等差數(shù)列中,,且,,構(gòu)成等比數(shù)列的前三項(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和20.(12分)已知圓心在直線上,且過點、(1)求的標(biāo)準(zhǔn)方程;(2)已知過點的直線被所截得的弦長為4,求直線的方程21.(12分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項和.22.(10分)已知幾何體中,平面平面,是邊長為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對于①,根據(jù)線線平行的性質(zhì)可知點即為點,因此可判斷①正確;對于②,根據(jù)線面垂直的判定可知平面,,由此可判定的位置,進而判定②的正誤;對于③,根據(jù)面面平行可判定平面平面,因此可判斷此時一定落在上,由此可判斷③的正誤.【詳解】如圖:對于①,在正方體中,,若異于,則過點至少有兩條直線和平行,這是不可能的,因此底面內(nèi)(包括邊界)滿足的點有且只有個,即為點,故①正確;對于②,正方體中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直線一定落在平面內(nèi),由是平面上的動點可知,一定落在上,這樣的點有無數(shù)多個,故②錯誤;對于③,,平面,則平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的動點可知,此時一定落在上,即點的軌跡是線段,故③正確,故選:C.2、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因為雙曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A3、D【解析】以為坐標(biāo)原點,向量,,方向分別為、、軸建立空間直角坐標(biāo)系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標(biāo)原點,向量,,方向分別為、、軸建立空間直角坐標(biāo)系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.4、A【解析】根據(jù)直線斜率與傾斜角的關(guān)系,結(jié)合直線斜截式方程進行求解即可.【詳解】因為直線的傾斜角為45°,所以該直線的斜率為,又因為該直線在y軸上的截距為2022,所以該直線的方程為:,故選:A5、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C6、A【解析】先根據(jù)雙曲線的離心率得到,然后由,得,即為所求的漸近線方程,進而可得結(jié)果【詳解】∵雙曲線的離心率,∴又由,得,即雙曲線()的漸近線方程為,∴雙曲線的漸近線方程為故選:A7、B【解析】先得到從高二和高三年級抽取人,再利用分層抽樣進行求解.【詳解】設(shè)高一年級學(xué)生人數(shù)為,因為從三個年級中抽取一個容量為的樣本,且高一年級抽取人,所以從高二和高三年級抽取人,則,解得,即高一年級學(xué)生人數(shù)為.故選:B8、B【解析】利用漸近線方程和直線解出Q點坐標(biāo),再由得P點坐標(biāo),代入雙曲線方程得到a、b、c的齊次式可解.【詳解】如圖,因為與漸近線垂直所以的斜率為,方程為解的Q的坐標(biāo)為設(shè)P點坐標(biāo)為則,因為,所以,得點P坐標(biāo)為,代入得:所以,即所以漸近線方程為故選:B.9、A【解析】利用空間向量加法法則直接求解【詳解】連接BD,如圖,則故選:A10、C【解析】利用點到直線的距離公式和弦長公式可以求出的面積是關(guān)于的一個式子,即可求出答案.【詳解】圓心到直線的距離,弦長為..當(dāng),即時,取得最大值.故選:C.11、A【解析】由傾斜角求出斜率,列方程即可求出m.【詳解】因為直線l的傾斜角為,所以斜率.所以,解得:.故選:A12、D【解析】由題可得方程,進而可得點坐標(biāo)及點坐標(biāo),利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點F(2,0),準(zhǔn)線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點縱坐標(biāo)為,代入拋物線方程,得P點坐標(biāo)為,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、48【解析】根據(jù)頻率分布直方圖,求出成績不少于分的頻率,然后根據(jù)頻數(shù)頻率總數(shù),即可求出結(jié)果【詳解】根據(jù)頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學(xué)生進行問卷調(diào)查,利用樣本估計總體的思想,則應(yīng)抽取成績不少于60分的學(xué)生人數(shù)為人故答案為:14、【解析】以橋的頂點為坐標(biāo)原點,水平方向所在直線為x軸建立直角坐標(biāo)系,則根據(jù)點在拋物線上,可得拋物線的方程,設(shè)水面與橋的交點坐標(biāo)為,求出,進而可得水面的寬度.【詳解】以橋的頂點為坐標(biāo)原點,水平方向所在直線為x軸建立直角坐標(biāo)系,則拋物線的方程為,因為點在拋物線上,所以,即故拋物線的方程為,設(shè)河水上漲1米后,水面與橋的交點坐標(biāo)為,則,得,所以此時橋洞中水面的寬度為米故答案為:15、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.16、【解析】首先構(gòu)造二面角的平面角,如圖,再分別在和中求解.【詳解】作,且,連結(jié),,,,平面且,四邊形時平行四邊形,,平面,平面,中,,中,.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)9(2)【解析】(1)根據(jù)要求列出方程,求出的值;(2)求出二項式展開式的通項,列出不等式組,求出的取值范圍,從而求出,得到系數(shù)最大項.【小問1詳解】由題意得:,解得:或,因為,所以(舍去),從而【小問2詳解】二項式的展開式通項為:,則系數(shù)為,要求其最大值,則只要滿足,即9!r!9-r!?2r≥9!r-1!10-r18、(1);(2).【解析】(1)由可知,即可求出,故可得漸近線方程;(2)利用點在拋物線上及其拋物線的定義列方程求解即可.【詳解】(1)∵E的離心率,∴,即,解得,故E的漸近線方程為.(2)∵是C上一點,∴①,由拋物線的定義可知②,兩式聯(lián)立可得,解得則C的方程為.19、(1);(2)【解析】(1)設(shè)等差數(shù)列公差為d,利用基本量代換列方程組求出的通項公式,進而求出的首項和公比,即可求出的通項公式;(2)利用分組求和法直接求和.【小問1詳解】設(shè)等差數(shù)列的公差為d,則由已知得:,即,又,解得或(舍去),所以.,又,,,;【小問2詳解】,.20、(1);(2)或.【解析】(1)由、兩點坐標(biāo)求出直線的垂直平分線的方程與直線上聯(lián)立可得圓心坐標(biāo),由兩點間距離公式求出半徑,即可得圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的方程,求出圓心到直線的距離,再由垂徑定理結(jié)合勾股定理列方程求出的值,即可得直線的方程【詳解】由點、可得中點坐標(biāo)為,,所以直線的垂直平分線的斜率為,可得直線的垂直平分線的方程為:即,由可得:,所以圓心為,,所以的標(biāo)準(zhǔn)方程為,(2)設(shè)直線的方程為即,圓心到直線的距離,則可得,即,解得:或,所以直線的方程為或,即或21、(1)證明見解析(2)【解析】(1)由結(jié)合等差數(shù)列的定義證明即可;(2)由結(jié)合錯位相減法得出前項和.【小問1詳解】在兩邊同時除以,得:,,故數(shù)列是以1為首項,1為公差的等差數(shù)列;【小問2詳解】由(1)得:,,①②①②得:所以.22、(1)證明見解析;(2).【解析】(1)根據(jù)菱形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線面垂直的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版石灰石供應(yīng)合同模板
- 二零二五年度應(yīng)急管理及救援裝備租賃合同3篇
- 2025年度人工智能專利池共享與許可合同3篇
- 2025年度城市公共交通設(shè)施建設(shè)合同規(guī)范3篇
- 二零二四年商業(yè)地產(chǎn)項目新型業(yè)態(tài)招商代理服務(wù)合同樣本3篇
- 年度芳香除臭化學(xué)品:空氣清新劑產(chǎn)業(yè)分析報告
- 2025年新型材料現(xiàn)貨購銷合同標(biāo)準(zhǔn)范本3篇
- 2024-2025學(xué)年高中歷史第二單元古希臘和古羅馬的政治制度單元總結(jié)學(xué)案含解析岳麓版必修1
- 2025年度校園配送服務(wù)食品安全快速檢測質(zhì)量管理體系建設(shè)合同3篇
- 2025年度人工智能算法工程師保密協(xié)議及知識產(chǎn)權(quán)保護合同3篇
- 曙光磁盤陣列DS800-G10售前培訓(xùn)資料V1.0
- 寺廟祈福活動方案(共6篇)
- 2025年病案編碼員資格證試題庫(含答案)
- 企業(yè)財務(wù)三年戰(zhàn)略規(guī)劃
- 提高膿毒性休克患者1h集束化措施落實率
- 山東省濟南市天橋區(qū)2024-2025學(xué)年八年級數(shù)學(xué)上學(xué)期期中考試試題
- 主播mcn合同模板
- 新疆2024年中考數(shù)學(xué)試卷(含答案)
- 2024測繪個人年終工作總結(jié)
- DB11 637-2015 房屋結(jié)構(gòu)綜合安全性鑒定標(biāo)準(zhǔn)
- 制造業(yè)生產(chǎn)流程作業(yè)指導(dǎo)書
評論
0/150
提交評論