版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆西藏林芝市第二高級中學高二數(shù)學第一學期期末經典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平形六面體中,其中,,,,,則的長為()A. B.C. D.2.已知函數(shù),,當時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.3.在數(shù)列中,,則()A. B.C.2 D.14.已知矩形,為平面外一點,且平面,,分別為,上的點,且,,,則()A. B.C.1 D.5.橢圓的()A.焦點在x軸上,長軸長為2 B.焦點在y軸上,長軸長為2C.焦點在x軸上,長軸長為 D.焦點在y軸上,長軸長為6.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.7.已知函數(shù).若數(shù)列的前n項和為,且滿足,,則的最大值為()A.9 B.12C.20 D.8.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則=()A. B.C. D.9.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對稱,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內,則雙曲線的離心率為()A. B.C. D.10.等差數(shù)列中,,,則()A.1 B.2C.3 D.411.已知F為橢圓的右焦點,A為C的右頂點,B為C上的點,且垂直于x軸.若直線AB的斜率為,則橢圓C的離心率為()A. B.C. D.12.已知平面內有一點,平面的一個法向量為,則下列四個點中在平面內的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點,且周長最小的圓的標準方程為______14.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________15.已知隨機變量,且,則______.16.已知橢圓的右頂點為,為上一點,則的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正方體中,E為的中點(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值18.(12分)已知等差數(shù)列滿足:成等差數(shù)列,成等比數(shù)列.(1)求的通項公式:(2)在數(shù)列的每相鄰兩項與間插入個,使它們和原數(shù)列的項構成一個新數(shù)列,數(shù)列的前項和記為,求及.19.(12分)在中,是的中點,,現(xiàn)將該平行四邊形沿對角線折成直二面角,如圖:(1)求證:;(2)求二面角的余弦值.20.(12分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,若存在請求出的位置,不存在請說明理由.21.(12分)在二項式的展開式中;(1)若,求常數(shù)項;(2)若第4項的系數(shù)與第7項的系數(shù)比為,求:①二項展開式中的各項的二項式系數(shù)之和;②二項展開式中各項的系數(shù)之和22.(10分)求下列函數(shù)導數(shù):(1);(2);
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)空間向量基本定理、加法的運算法則,結合空間向量數(shù)量積的運算性質進行求解即可.【詳解】因為是平行六面體,所以,所以有:,因此有:,因為,,,,,所以,所以,故選:B2、C【解析】由題意得出,構造函數(shù),可知函數(shù)在區(qū)間上單調遞增,可得出對任意的恒成立,利用參變量分離法可得出,利用導數(shù)求得函數(shù)在區(qū)間上的最大值,由此可求得實數(shù)的取值范圍.【詳解】函數(shù)的定義域為,當時,恒成立,即,構造函數(shù),則,所以,函數(shù)在區(qū)間上為增函數(shù),則對任意的恒成立,,令,其中,則.,所以函數(shù)在上單調遞減;又,所以.因此,實數(shù)的取值范圍是.故選:C.3、A【解析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計算得解.【詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.4、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來,可求出的值,從而可得答案【詳解】解:因為,,所以所以,因為,所以,所以,故選:B5、B【解析】把橢圓方程化為標準方程可判斷焦點位置和求出長軸長.【詳解】橢圓化為標準方程為,所以,且,所以橢圓焦點在軸上,,長軸長為.故選:B.6、B【解析】利用余弦定理結合角的范圍可求得角的值,再利用三角形的內角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.7、C【解析】先得到及遞推公式,要想最大,則分兩種情況,負數(shù)且最小或為正數(shù)且最大,進而求出最大值.【詳解】①,當時,,當時,②,所以①-②得:,整理得:,所以,或,當是公差為2的等差數(shù)列,且時,最小,最大,此時,所以,此時;當且是公差為2的等差數(shù)列時,最大,最大,此時,所以,此時綜上:的最大值為20故選:C【點睛】方法點睛:數(shù)列相關的最值求解,要結合題干條件,使用不等式放縮,函數(shù)單調性或導函數(shù)等進行求解.8、A【解析】根據(jù)空間向量的加減法運算法則,直接寫出向量的表達式,即可得答案.【詳解】=,故選:A.9、C【解析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(2a,2a)在雙曲線上,代入雙曲線的標準方程,結合a,b,c的關系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點是雙曲線與截面正方形的交點之一,設雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C10、B【解析】根據(jù)給定條件利用等差數(shù)列性質直接計算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B11、D【解析】根據(jù)題意表示出點的坐標,再由直線AB的斜率為,列方程可求出橢圓的離心率【詳解】由題意得,,當時,,得,由題意可得點在第一象限,所以,因為直線AB的斜率為,所以,化簡得,所以,,得(舍去),或,所以離心率,故選:D12、A【解析】設所求點的坐標為,由,逐一驗證選項即可【詳解】設所求點的坐標為,則,因為平面的一個法向量為,所以,,對于選項A,,對于選項B,,對于選項C,,對于選項D,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】方法一:根據(jù)當線段為圓的直徑時,圓周長最小,由線段的中點為圓心,其長一半為半徑求解;方法二:根據(jù)當線段為圓的直徑時,圓周長最小,根據(jù)以AB為直徑的圓的方程求解.【詳解】方法一:當線段為圓的直徑時,過點,的圓的半徑最小,從而周長最小,即圓心為線段的中點,半徑則所求圓的標準方程為方法二:當線段為圓的直徑時,過點,的圓的半徑最小,從而周長最小又,,故所求圓的方程為,整理得,所以所求圓的標準方程為14、【解析】根據(jù)題意可以設,求其導數(shù)可知在上的單調性,由是上的奇函數(shù),可知的奇偶性,進而可知在上的單調性,由可知的零點,最后分類討論即可.【詳解】設,則對,,則在上為單調遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調遞減函數(shù),又∵,∴,由已知得,所以當時,;當時,;當時,;當時,;若,則;若,則或,解得或或;則的解集為.故答案為:.15、【解析】根據(jù)二項分布的均值與方差的關系求得,再根據(jù)方差的性質求解即可.【詳解】,所以,又因為,所以故答案為:12【點睛】本題主要考查了二項分布的均值與方差的計算,同時也考查了方差的性質,屬于基礎題.16、【解析】設出點P的坐標,利用兩點間距離公式建立函數(shù)關系,借助二次函數(shù)計算最值作答.【詳解】橢圓的右頂點為,設點,則,即,且,于是得,因,則當時,,所以的最大值為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ).【解析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;也可利用空間向量計算證明;(Ⅱ)可以將平面擴展,將線面角轉化,利用幾何方法作出線面角,然后計算;也可以建立空間直角坐標系,利用空間向量計算求解.【詳解】(Ⅰ)[方法一]:幾何法如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;[方法二]:空間向量坐標法以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,設正方體的棱長為,則、、、,,,設平面的法向量為,由,得,令,則,,則.又∵向量,,又平面,平面;(Ⅱ)[方法一]:幾何法延長到,使得,連接,交于,又∵,∴四邊形為平行四邊形,∴,又∵,∴,所以平面即平面,連接,作,垂足為,連接,∵平面,平面,∴,又∵,∴直線平面,又∵直線平面,∴平面平面,∴在平面中的射影在直線上,∴直線為直線在平面中的射影,∠為直線與平面所成的角,根據(jù)直線直線,可知∠為直線與平面所成的角.設正方體的棱長為2,則,,∴,∴,∴,即直線與平面所成角的正弦值為.[方法二]:向量法接續(xù)(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直線與平面所成角的正弦值為.[方法三]:幾何法+體積法如圖,設的中點為F,延長,易證三線交于一點P因為,所以直線與平面所成的角,即直線與平面所成的角設正方體的棱長為2,在中,易得,可得由,得,整理得所以所以直線與平面所成角的正弦值為[方法四]:純體積法設正方體的棱長為2,點到平面的距離為h,在中,,,所以,易得由,得,解得,設直線與平面所成的角為,所以【整體點評】(Ⅰ)的方法一使用線面平行的判定定理證明,方法二使用空間向量坐標運算進行證明;(II)第一種方法中使用純幾何方法,適合于沒有學習空間向量之前的方法,有利用培養(yǎng)學生的集合論證和空間想象能力,第二種方法使用空間向量方法,兩小題前后連貫,利用計算論證和求解,定為最優(yōu)解法;方法三在幾何法的基礎上綜合使用體積方法,計算較為簡潔;方法四不作任何輔助線,僅利用正余弦定理和體積公式進行計算,省卻了輔助線和幾何的論證,不失為一種優(yōu)美的方法.18、(1);(2),.【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列的通項公式進行求解即可;(2)根據(jù)等差數(shù)列的通項公式,結合等比數(shù)列的前項和公式進行求解即可.【小問1詳解】設等差數(shù)列的公差為,因為成等差數(shù)列,所以有,因成等比數(shù)列,所以,所以;【小問2詳解】由題意可知:在和之間插入個,在和之間插入個,,在和之間插入個,此時共插入的個數(shù)為:,在和之間插入個,此時共插入的個數(shù)為:,因此.19、(1)證明見解析(2)【解析】(1)先求出BD,通過勾股定理的逆定理得,再由面面垂直的性質得線面垂直,從而得線線垂直;(2)作出二面角,然后再解直角三形即可.【小問1詳解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB?平面ABD,∴AB⊥平面BCD.又CD?平面BCD,∴AB⊥CD.【小問2詳解】因為點是的中點,在中,由(1)易知,.過點作垂直的延長線于,再連接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.20、(1)證明見解析(2)存在,點E為線段中點【解析】(1)通過作輔助線結合面面垂直的性質證明側面,從而證明結論;(2)建立空間直角坐標系,求出相關點的坐標,再求相關的向量坐標,求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點,因,則由平面?zhèn)让妫移矫鎮(zhèn)让?,得平面,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側面,又側面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設在線段上是否存在一點E,使得二面角的大小為,由是直三棱柱,所以以點A為原點,以AC、所在直線分別為x,z軸,以過A點和AC垂直的直線為y軸,建立空間直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年連鎖門店員工協(xié)議模板版B版
- 2024年花園建設合同模板3篇
- 2024年露天礦山施工與礦石開采業(yè)務合作合同版B版
- 勞務派遣的崗位分類協(xié)議書
- 加盟模式協(xié)議書(2篇)
- 2024未成年人安全教育與社會實踐合作合同3篇
- 2024消防通風工程項目管理與質量控制協(xié)議2篇
- 2025年曲靖會澤縣招考事業(yè)單位工作人員高頻重點提升(共500題)附帶答案詳解
- 2024年虛擬現(xiàn)實設備租賃合同
- 2025年新疆兵團第六師五家渠市事業(yè)單位招聘161人歷年高頻重點提升(共500題)附帶答案詳解
- 2024-2030年中國停車場建設行業(yè)發(fā)展趨勢投資策略研究報告
- 藍軍戰(zhàn)略課件
- 物業(yè)管理重難點分析及解決措施
- 北京郵電大學《數(shù)據(jù)庫系統(tǒng)》2022-2023學年第一學期期末試卷
- 湖北省黃岡市2023-2024學年高一上學期期末考試化學試題(含答案)
- 中國HDMI高清線行業(yè)市場動態(tài)分析及未來趨勢研判報告
- 物流公司安全生產監(jiān)督檢查管理制度
- DB22T 277-2011 建筑電氣防火檢驗規(guī)程
- 2024年基本公共衛(wèi)生服務工作計劃(三篇)
- 2024-2030年中國錸行業(yè)供需趨勢及發(fā)展規(guī)模分析報告
- 2025屆上海市復旦附中浦東分校物理高二上期末教學質量檢測試題含解析
評論
0/150
提交評論