




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AuditDataAnalyticsChapter6Wherewearenow1.DataAnalytics2.DataPreparationandCleaning3.ModelingandEvaluation4.Visualization5.TheModernAudit6.AuditAnalytics7.KeyPerformanceIndicators8.FinancialStatementAnalyticsObjectivesLO6-1UnderstanddifferenttypesofanalysisforauditingandwhentousethemLO6-2UnderstandbasicdescriptiveauditanalysesLO6-3UnderstandmorecomplexstatisticalanalysesLO6-4UnderstandadvancedpredictiveandprescriptiveanalyticsWhenshouldyouuseauditdataanalytics?LO6-1DataAnalyticscanbeappliedtotheauditingfunctiontoincreasecoverageoftheaudit,whilereducingthetimetheauditordedicatestotheaudittasks.Naturerepresentswhyweperformauditprocedures.
Extentindicateshowmuchwecantest.
Timingtellsushowoftentheprocedureshouldberun.AuditDataAnalyticscanhelptoimprovethenature,timing,andextentofauditprocedures…IdentifytheProblem
Whatistheauditdepartmenttryingtoachieveusingdataanalytics?
Doyouneedtoanalyzethesegregationofdutiestotestwhetherinternalcontrolsareoperatingeffectively?
Areyoulookingforoperationalinefficiencies,suchasduplicatepaymentsofinvoices?
IdentifytheProblem(continued)
Areyoutryingtoidentifyphantomemployeesorvendors?
Areyoutryingtocollectevidencethatyouarecomplyingwithspecificregulations?
Areyoutryingtotestaccountbalancestotiethemtothefinancialstatements?MastertheData–Theauditdatastandardsprovideageneraloverviewofthebasicdataauditorswillevaluate,includingnotabletablesandfields.MastertheDataFieldNameDescriptionSales_Order_IDUniqueidentifierforeachsalesorder.ThisIDmayneedtobecreatedbyconcatenatingfields(e.g.,documentnumber,documenttype,andyear)touniquelyidentifyeachsalesorder.Sales_Order_Date Thedateofthesalesorder,regardlessofthedatetheorderisentered.Entered_By User_ID(fromUser_Listingfile)forpersonwhocreatedtherecord.Approved_By UserID(fromUser_Listingfile)forpersonwhoapprovedcustomermasteradditionsorchanges. Sales_Order_Amount_LocalSalesmonetaryamountrecordedinthelocalcurrency. ExcerptfromTable6-1PerformtheTestPlan–Commondataanalyticsprocedurescanbefoundincomputer-assistedauditingtechniques(CAATS)PerformtheTestPlanDescriptiveanalyticssummarizeactivityormasterdataonspecificattributes.
Diagnosticanalytics
lookforcorrelationsorpatternsofinterest.Predictiveanalytics
helpauditorsdiscoverhiddenpatternslinkedtoabnormalbehavior.Prescriptiveanalytics
makerecommendationsbasedonpastdata.Examplesofdescriptiveanalytics:Ageanalysis—groupsbalancesbydateSorting—identifieslargestorsmallestvaluesSummarystatistics—mean,median,min,max,count,sumSampling—randomandmonetaryunitExampleAuditProcedure:Analysisofnewaccountsopenedandemployeebonusesbyemployeeandlocation.Examplesofdiagnosticanalytics:Z-score—outlierdetectionBenford’slaw—identifiestransactionsoruserswithnontypicalactivitybasedonthedistributionoffirstdigitsDrill-down—exploresthedetailsbehindthevaluesClustering—groupsrecordsbynonobvioussimilaritiesExactandfuzzymatching—joinstablesandidentifiesplausiblerelationshipsSequencecheck—detectsgapsinrecordsandduplicatesentriesStratification—groupsdatabycategoriesExamplesofpredictiveanalytics:Regression—predictsspecificdependentvaluesbasedonindependentvariableinputsClassification—predictsacategoryforarecordProbability—usesarankscoretoevaluatethestrengthofclassificationSentimentanalysis—evaluatestextforpositiveornegativesentimenttopredictpositiveornegativeoutcomesExamplesofprescriptiveanalytics:What-ifanalysis—decisionsupportsystemsAppliedstatistics—predictsaspecificoutcomeorclassArtificialintelligence—usesobservationsofpastactionstopredictfutureactionsforsimilareventsExampleAuditProcedure:Analysisdeterminesprocedurestofollowwhennewaccountsareopenedforinactivecustomers,suchasrequiringapproval.Manyoftheseapproachescanbeautomatedwithgeneralizedauditsoftware,includingExcelandIDEA.AddressandRefineResultsDifferentmodelswillproducedifferentresults,forexample:-Highrisktransactions-Userswithconflictingroles-ExceptionstostandardprocedureAuditorswouldevaluatetheevidenceandcollaboratewithmanagementtoresolvetheissues.CommunicateInsights–Resultsmayappearinanauditdashboardandmaybeincludedinauditevidence.
TrackOutcomes–Evaluatedetectionandresolutionofexceptions.Periodicallyevaluatetheproceduresforeffectiveness.
Q.Compareandcontrastdescriptiveanddiagnosticanalytics.Howmightthesebeusedinanaudit?Whatdodescriptiveanalyticslooklike?LO6-2Descriptiveanalyticsareusefulforsortingandsummarizingdatatocreateabaselineorpointofreferenceformoreadvancedanalytics.Ageanalysisdeterminesthelikelihoodofpayment.BasicExcelformulasforevaluatingunpaidorders:Daysoutstanding=[Agingdate]–[Orderdate]Buckets=IF([Agingdate]–[Orderdate]<=30,[Amount],0)InIDEA:GotoAnalysis>Categorize>Agingandsetparameters.DaysoldTotal0-30154,32231-6074,53961-9042,200>9016,900Sortingvaluesbysmallestorlargestvaluesmayprovidemeaningfulinsight.InExcel:Home>FormatasTable,thenusedrop-downmenus.InIDEA:GotoData>Order>SortSummarystatisticsallowyoutoseetherelativesizeofavaluetoitspopulation.InExcel:Mean:=AVERAGE([range])Median:=MEDIAN([range])Minimum:=MIN([range])Maximum:=MAX([range])Count:=COUNT([range])Sum:=SUM([range])InIDEA:InthePropertiespaneontheright,clickFieldStatistics.Randomsamplingisusefulformanualevaluationofsourcedocuments.InExcel:EnableAnalysisToolPak.GotoData>Analysis>DataAnalysis.ClickSamplingandsetparameters.InIDEA:GotoAnalysis>Sample>Randomandsetparameters.Monetaryunitsamplingisusefulfortargetinglargertransactions.InExcel:Sortdata
andcalculatethecumulativebalance.Chooseasamplingintervalandsize.Godownthelist.InIDEA:GotoAnalysis>Sample>MonetaryUnit>Planandsetparameterstocalculatesamplesize.Q.Whattypeofdescriptiveanalyticswouldyouusetofindnegativenumbersthatwereenteredinerror?HowdoyouperformdiagnosticanalysesandBenford’sLaw? LO6-3Diagnosticanalyticsprovidemoredetailsintonotjusttherecords,butalsorecordsorgroupsofrecordsthathavesomestandoutfeatures.Z-scoresidentifyoutliersbycalculatingstandarddistancefromthemean.HighZ-scorevaluesrepresentoutliers.Ascoreabove3standarddeviationsisrare.InExcel:Calculatetheaverageandstandarddeviation.CalculatetheZ-score:=([value]–[mean])/[standarddeviation]Exhibit6-1Z-scoreshowstherelativepositionofapointofinterest.Benford’sLawidentifiesabnormaldistributionsoflargenumbers.InExcel:Extracttheleadingdigit=LEFT([Amount],1)Createafrequencydistribution=COUNTIF([Range],[Digit])(=[ActualCount]/SUM[ActualCount])Chartagainstexpected%Bonus:UsePivotTablestoidentifyindividualemployeeaveragesExhibit6-2Benford’slawpredictsthedistributionoffirstdigits.Benford’sLawidentifiesabnormaldistributionsoflargenumbers.InIDEA:GotoAnalysis>Explore>Benford’sLawExhibit6-2Benford’slawpredictsthedistributionoffirstdigits.Modernsoftwareallowsyoutodrilldownbyclickingthroughsummaryvaluestoviewtheunderlyingvalues.Exactandfuzzymatchingallowyoutojointablesoncompleteorpartialvalues.Examples:Exactmatch:Employee#14552=Employee#14552Fuzzymatch:234SecondAve
=234SecondAvenue
InExcel:DownloadandenabletheFuzzyLookupAdd-inforExcel.GotoFuzzyLookup>FuzzyLookupMatchtablesandcolumns.InIDEA:CurrentlyunavailablebydefaultSequencechecksareusedforlocatinggapsorduplicatetransactions.InExcel:=IF([secondvalue]–[firstvalue]=1,"","Missing")=SMALL(IF(ISNA(MATCH(ROW([range]),[range],0)),ROW([range])),ROW([Firstvalueinrange))Stratificationandclusteringareusedtogrouptransactionsorindividualsbysimilarcharacteristics.Q.Let’ssayacompanyhasninedivisions,andeachdivisionhasadifferentchecknumberbasedonitsdivision—soonestartswith“1,”anotherwith“2,”etc.WouldBenford’slawworkinthissituation?Howdoyouperformpredictiveandprescriptiveanalytics?LO6-4Predictiveandprescriptiveanalyticsprovidelessdeterministicoutputandmoreprobabilisticmodels,judgingthingslikelikelihoodandprobability.Regressionallowsanauditortopredictaspecificdependentvaluebasedonindependentvariableinputs.Classificationinauditingisgoingtobemainlyfocusedonriskassessment.Thepredictedclassesmaybelowriskorhighrisk.Whentalkingaboutclassification,thestrengthoftheclasscanbeimportanttotheauditor,especiallywhentryingtolimitthescope(e.g.,evaluateonlythe10riskiesttransactions).Sentimentanalysisenablesevaluationoftext(e.g.,annualreportore-mails)fordistributionsofwordsthatmaybeclassifiedaspositiveornegativeoutcomesortolookforpotentialbias.Appliedstatisticsincludeadditionalmixeddistributionsandnontraditionalstatisticsmayalsoprovideinsighttotheauditor.Artificialintelligencemodelsexpectedbehaviorbyevaluatingpastactionstakenbyauditorstopredictexpectedbehaviorinanunknowncase.Additionalanalysesareavailableinspecializ
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 肇慶市實(shí)驗(yàn)中學(xué)高中語(yǔ)文一:荊軻刺秦王3教案
- 2025年新疆新星國(guó)有資本投資集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 2025年甘肅張掖市金控張掖融資擔(dān)保有限公司招聘筆試參考題庫(kù)含答案解析
- 山東濟(jì)南公開(kāi)招聘社區(qū)工作者筆試帶答案2024年
- 2024年山東日照事業(yè)單位招聘考試真題答案解析
- 2025年陜西西安灃東生產(chǎn)力促進(jìn)中心有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年安徽廣德縣國(guó)有資產(chǎn)投資經(jīng)營(yíng)有限公司招聘筆試參考題庫(kù)含答案解析
- 2024年安徽六安事業(yè)單位招聘考試真題答案解析
- 肇慶市實(shí)驗(yàn)中學(xué)高中英語(yǔ)五:lifeinthefuture第五課時(shí)grammar高效課堂教學(xué)設(shè)計(jì)
- 吉林省四平市梨樹(shù)縣第一高級(jí)中學(xué)等七校2024-2025學(xué)年高二下學(xué)期期中考試 歷史試題(含答案)
- 出租屋轉(zhuǎn)租補(bǔ)充協(xié)議書(shū)范文范本
- 2024年海南省高考地理試卷(含答案)
- 2024年2個(gè)居間人內(nèi)部合作協(xié)議書(shū)模板
- 【企業(yè)盈利能力探析的國(guó)內(nèi)外文獻(xiàn)綜述2400字】
- 兩位數(shù)加一位數(shù)和整十?dāng)?shù)(不進(jìn)位) 1000題
- 《2008遼寧省建設(shè)工程計(jì)價(jià)依據(jù)執(zhí)行標(biāo)準(zhǔn)》大建委發(fā)200875號(hào)
- TSDLPA 0001-2024 研究型病房建設(shè)和配置標(biāo)準(zhǔn)
- 2023年宿遷市洋河新區(qū)“返鄉(xiāng)興村”新村干招聘考試真題
- 機(jī)器人自主導(dǎo)航與定位技術(shù)測(cè)試考核試卷
- 山東省建設(shè)施工企業(yè)安全生產(chǎn)許可證變更審核表
- 對(duì)公 雅思培訓(xùn)合同范本
評(píng)論
0/150
提交評(píng)論