廣西玉林市北流實驗中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁
廣西玉林市北流實驗中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁
廣西玉林市北流實驗中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁
廣西玉林市北流實驗中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁
廣西玉林市北流實驗中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西玉林市北流實驗中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間直角坐標(biāo)系中的點,,,則點P到直線AB的距離為()A. B.C. D.2.一個幾何體的三視圖都是半徑為1的圓,在該幾何體內(nèi)放置一個高度為1的長方體,則長方體的體積最大值為()A. B.C. D.13.某一電子集成塊有三個元件a,b,c并聯(lián)構(gòu)成,三個元件是否有故障相互獨立.已知至少1個元件正常工作,該集成塊就能正常運行.若每個元件能正常工作的概率均為,則在該集成塊能夠正常工作的情況下,有且僅有一個元件出現(xiàn)故障的概率為()A. B.C. D.4.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六5.如圖,在三棱錐中,是線段的中點,則()A. B.C. D.6.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.107.已知空間三點,,在一條直線上,則實數(shù)的值是()A.2 B.4C.-4 D.-28.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.9.已知點,,直線:與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.10.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件11.直線在y軸上的截距為()A.-1 B.1C. D.12.年底以來,我國多次在重要場合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負(fù)抵消,實現(xiàn)二氧化碳“零排放”.二氧化碳的分子是由一個碳原子和兩個氧原子構(gòu)成的,其結(jié)構(gòu)式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構(gòu)成的不同二氧化碳分子共有()A.種 B.種C.種 D.種二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)變量x,y滿足約束條件則的最大值為___________.14.設(shè)O為坐標(biāo)原點,拋物線的焦點為F,P為拋物線上一點,若,則的面積為____________15.已知函數(shù),有且只有一個零點,則實數(shù)的取值范圍是_______.16.在區(qū)間上隨機取1個數(shù),則取到的數(shù)小于2的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且經(jīng)過點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,經(jīng)過點的直線與橢圓交于、兩點,若原點到直線的距離為,且,求直線的方程.18.(12分)如圖,已知正方體的棱長為,,分別是棱與的中點.(1)求以,,,為頂點的四面體的體積;(2)求異面直線和所成角的大小.19.(12分)已知函數(shù)(a為非零常數(shù))(1)若f(x)在處的切線經(jīng)過點(2,ln2),求實數(shù)a的值;(2)有兩個極值點,.①求實數(shù)a的取值范圍;②若,證明:.20.(12分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值21.(12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,和分別是和的中點,點在直線上,且.(1)證明:無論取何值,總有;(2)是否存在點,使得平面與平面所成角為?若存在,試確定點的位置;若不存在,請說明理由.22.(10分)如圖,在三棱錐中,,點為線段上的點.(1)若平面,試確定點的位置,并說明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點到直線的距離為.故選:D2、B【解析】根據(jù)題意得到幾何體為半徑為1的球,長方體的體對角線為球的直徑時,長方體體積最大,設(shè)出長方體的長和寬,得到等量關(guān)系,利用基本不等式求解體積最大值.【詳解】由題意得:此幾何體為半徑為1的球,長方體為球的內(nèi)接長方體時,體積最大,此時長方體的體對角線為球的直徑,設(shè)長方體長為,寬為,則由題意得:,解得:,而長方體體積為,當(dāng)且僅當(dāng)時等號成立,故選:B3、A【解析】記事件為該集成塊能夠正常工作,事件為僅有一個元件出現(xiàn)故障,進(jìn)而結(jié)合對立事件的概率公式得,再根據(jù)條件概率公式求解即可.【詳解】解:記事件為該集成塊能夠正常工作,事件為僅有一個元件出現(xiàn)故障,則為該集成塊不能正常工作,所以,,所以故選:A4、C【解析】求出二項式定理的通項公式,得到除以7余數(shù)是1,然后利用周期性進(jìn)行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:5、A【解析】根據(jù)給定幾何體利用空間向量基底結(jié)合向量運算計算作答.【詳解】在三棱錐中,是線段的中點,所以:.故選:A6、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經(jīng)過點,且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A7、C【解析】根據(jù)三點在一條直線上,利用向量共線原理,解出實數(shù)的值.【詳解】解:因為空間三點,,在一條直線上,所以,故.所以.故選:C.【點睛】本題主要考查向量共線原理,屬于基礎(chǔ)題.8、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時取等號,故選:C.9、A【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實數(shù)的取值范圍是或,故選:A.10、D【解析】根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:因為:,:,所以,所以為q的既不充分又不必要條件.故選:D.11、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A12、C【解析】分兩種情況討論:兩個氧原子相同、兩個氧原子不同,分別計算出兩種情況下二氧化碳分子的個數(shù),利用分類加法計數(shù)原理可得結(jié)果.【詳解】分以下兩種情況討論:若兩個氧原子相同,此時二氧化碳分子共有種;若兩個氧原子不同,此時二氧化碳分子共有種.由分類加法計數(shù)原理可知,由上述同位素可構(gòu)成的不同二氧化碳分子共有種.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)線性約束條件畫出可行域,把目標(biāo)函數(shù)轉(zhuǎn)化為,然后根據(jù)直線在軸上截距最大時即可求出答案.【詳解】畫出可行域,如圖,由,得,由圖可知,當(dāng)直線過點時,有最大值,且最大值為.故答案為:.14、【解析】根據(jù)拋物線定義求出點坐標(biāo),即可求出面積.【詳解】由題可得,設(shè),則由拋物線定義可得,解得,代入拋物線方程可得,所以.故答案為:.15、【解析】由題知方程,,有且只有一個零點,進(jìn)而構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性與函數(shù)值得變化情況,作出函數(shù)的大致圖像,數(shù)形結(jié)合求解即可.【詳解】解:因為函數(shù),,有且只有一個零點,所以方程,,有且只有一個零點,令,則,,令,則所以為上的單調(diào)遞減函數(shù),因為,所以當(dāng)時,;當(dāng)時,;所以當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,因為當(dāng)趨近于時,趨近于,當(dāng)趨近于時,趨近于,且,時,,故的圖像大致如圖所示,所以方程,,有且只有一個零點等價于或.所以實數(shù)的取值范圍是故答案為:16、【解析】根據(jù)幾何概型計算公式進(jìn)行求解即可.【詳解】設(shè)“區(qū)間上隨機取1個數(shù)”,對應(yīng)集合為,區(qū)間長度為3,“取到的數(shù)小于2”,對應(yīng)集合為,區(qū)間長度為1,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由已知條件可得出關(guān)于、、的方程組,求出這三個量的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在且不為零,設(shè)直線的方程為,由點到直線的距離公式可得出,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,代入韋達(dá)定理求出、的值,由此可得出直線的方程.【詳解】(1)設(shè)橢圓的焦距為,則,解得,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)若直線斜率不存在,則直線過原點,不合乎題意.所以,直線的斜率存在,設(shè)斜率為,設(shè)直線方程為,設(shè)、,原點到直線的距離為,,即①.聯(lián)立直線與橢圓方程可得,則,則,由韋達(dá)定理可得,.,則為線段的中點,所以,,,得,,所以,,整理可得,解得,即,,因此,直線的方程為或.【點睛】方法點睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點坐標(biāo)為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時計算;(3)列出韋達(dá)定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為、的形式;(5)代入韋達(dá)定理求解.18、(1)(2)【解析】(1)由題意可知該四面體為以為底面,以為高的四面體,可得四面體體積;(2)連接,,可得即為異面直線和所成的角的平面角,根據(jù)余弦定理可得角的大小.【小問1詳解】解:連接,,,以,,,為頂點的四面體即為三棱錐,底面的面積,高,則其體積;【小問2詳解】解:連接,,,則即為異面直線和所成的角的平面角,在中,,,,則,故,即和所成的角的的大小為.19、(1)(2)①(0,1);②證明見解析【解析】小問1先求出切線方程,再將點(2,ln2),代入即可求出a的值;小問2的①通過求導(dǎo),再結(jié)合函數(shù)的單調(diào)性求出a的取值范圍;②結(jié)合已知條件,構(gòu)造新函數(shù)即可得到證明.【小問1詳解】,∴切線方程為,將點代入解得:【小問2詳解】①當(dāng)時,即時,,f(x)在(-1,+∞)上單調(diào)遞增;f(x)無極值點,當(dāng)時,由得,,故f(x)在(-1,-)上單調(diào)遞增,在(-,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增,f(x)有兩個極值點;.當(dāng)時,由得,,f(x)(,)上單調(diào)遞減,在(,+∞)上單調(diào)遞此時,f(x)有1個極值點,綜上,當(dāng)時,f(x)有兩個極值點,即,即a的范圍是(0,1)②由(2)可知,又由可知,可得.要證,即證,即證,即證即證令函數(shù),x(0,1),故t(x)在(0,1)上單調(diào)遞增,又所以在上恒成立,即所以.20、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,?。辉O(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴21、(1)證明見解析;(2)不存在,理由見解析.【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,計算得出,即可得出結(jié)論;(2)計算出平面的一個法向量,利用空間向量法可得出關(guān)于的方程,即可得出結(jié)論.【詳解】(1)因為平面,,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、,,,所以,,則,因此,無論取何值,總有;(2),設(shè)平面的法向量為,則,取,則,,所以,平面的一個法向量為,易知平面的一個法向量為,由題意可得,整理可得,,此方程無解,因此,不存在點,使得平面與平面所成的角為.22、(1)點為MC的中點,理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論