版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆浙江省寧波華茂外國語學(xué)校數(shù)學(xué)高一上期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若單位向量,滿足,則向量,夾角的余弦值為()A. B.C. D.2.已知,則角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知點,向量,若,則點的坐標(biāo)為()A. B.C. D.4.設(shè),則()A.a>b>c B.a>c>bC.c>a>b D.c>b>a5.已知集合M={x|1≤x<3},N={1,2},則M∩N=()A. B.C. D.6.已知函數(shù),則函數(shù)()A.有最小值 B.有最大值C.有最大值 D.沒有最值7.已知圓錐的底面半徑為,當(dāng)圓錐的體積為時,該圓錐的母線與底面所成角的正弦值為()A. B.C. D.8.如圖,在平面內(nèi)放置兩個相同的直角三角板,其中,且三點共線,則下列結(jié)論不成立的是A. B.C.與共線 D.9.如圖,正方體中,①與平行;②與垂直;③與垂直以上三個命題中,正確命題的序號是()A.①② B.②③C.③ D.①②③10.已知中,,,點M是線段BC(含端點)上的一點,且,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.邊長為3的正方形的四個頂點都在球上,與對角線的夾角為45°,則球的體積為______.12.某房屋開發(fā)公司用14400萬元購得一塊土地,該地可以建造每層的樓房,樓房的總建筑面積(即各層面積之和)每平方米平均建筑費用與建筑高度有關(guān),樓房每升高一層整幢樓房每平方米建筑費用提高640元.已知建筑5層樓房時,每平方米建筑費用為8000元,公司打算造一幢高于5層的樓房,為了使該樓房每平米的平均綜合費用最低(綜合費用是建筑費用與購地費用之和),公司應(yīng)把樓層建成____________層,此時,該樓房每平方米的平均綜合費用最低為____________元13.設(shè)是R上的奇函數(shù),且當(dāng)時,,則__________14.已知,則的值為___________.15.已知函數(shù)(,,)的部分圖象如圖,則函數(shù)的單調(diào)遞增區(qū)間為______.16.給出以下四個結(jié)論:①若函數(shù)的定義域為,則函數(shù)的定義域是;②函數(shù)(其中,且)圖象過定點;③當(dāng)時,冪函數(shù)的圖象是一條直線;④若,則的取值范圍是;⑤若函數(shù)在區(qū)間上單調(diào)遞減,則的取值范圍是.其中所有正確結(jié)論的序號是___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.—條光線從點發(fā)出,經(jīng)軸反射后,經(jīng)過點,求入射光線和反射光線所在的直線方程.18.如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,D,E分別為棱AB,BC的中點,M為棱AA1的中點(1)證明:A1B1⊥C1D;(2)若AA1=4,求三棱錐A﹣MDE的體積19.已知函數(shù).(1)當(dāng)函數(shù)取得最大值時,求自變量x的集合;(2)完成下表,并在平面直角坐標(biāo)系內(nèi)作出函數(shù)在的圖象.x0y20.如圖,角的終邊與單位圓交于點,且.(1)求;(2)求.21.如圖,已知直角梯形中,且,又分別為的中點,將△沿折疊,使得.(Ⅰ)求證:AE⊥平面CDE;(Ⅱ)求證:FG∥平面BCD;(Ⅲ)在線段AE上找一點R,使得平面BDR⊥平面DCB,并說明理由
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】將平方可得,再利用向量夾角公式可求出.【詳解】,是單位向量,,,,即,即,解得,則向量,夾角的余弦值為.故選:A.2、A【解析】根據(jù)題意,由于,則說明正弦值和余弦值都是正數(shù),因此可知角所在的象限是第一象限,故選A.考點:三角函數(shù)的定義點評:主要是考查了三角函數(shù)的定義的運用,屬于基礎(chǔ)題3、B【解析】設(shè)點坐標(biāo)為,利用向量的坐標(biāo)運算建立方程組,解之可得選項.【詳解】設(shè)點坐標(biāo)為,,A,所以,又,,所以.解得,解得點坐標(biāo)為.故選:B.4、C【解析】分別求出的范圍即可比較.【詳解】,,,,,.故選:C.5、B【解析】根據(jù)集合交集的定義可得所求結(jié)果【詳解】∵,∴故選B【點睛】本題考查集合的交集運算,解題的關(guān)鍵是弄清兩集合交集中元素的特征,進(jìn)而得到所求集合,屬于基礎(chǔ)題6、B【解析】換元法后用基本不等式進(jìn)行求解.【詳解】令,則,因為,,故,當(dāng)且僅當(dāng),即時等號成立,故函數(shù)有最大值,由對勾函數(shù)的性質(zhì)可得函數(shù),即有最小值.故選:B7、A【解析】首先理解圓錐體中母線與底面所成角的正弦值為它的高與母線的比值,結(jié)合圓錐的體積公式及已知條件即可求出正弦值.【詳解】如圖,根據(jù)圓錐的性質(zhì)得底面圓,所以即為母線與底面所成角,設(shè)圓錐的高為,則由題意,有,所以,所以母線的長為,則圓錐的母線與底面所成角的正弦值為.故選:A【點睛】本題考查了圓錐的體積,線面角的概念,考查運算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)圓錐的性質(zhì)得即為母線與底面所成角,再根據(jù)幾何關(guān)系求解.8、D【解析】設(shè)BC=DE=m,∵∠A=30°,且B,C,D三點共線,則CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故選D.9、C【解析】根據(jù)線面平行、線面垂直的判定與性質(zhì),即可得到正確答案【詳解】解:對于①,在正方體中,由圖可知與異面,故①不正確對于②,因為,不垂直,所以與不垂直,故②不正確對于③,在正方體中,平面,又∵平面,∴與垂直.故③正確故選:C【點睛】此題考查線線平行、線線垂直,考查學(xué)生的空間想象能力和對線面平行、線面垂直的判定與性質(zhì)的理解與掌握,屬基礎(chǔ)題10、D【解析】如圖所示,建立直角坐標(biāo)系,則,,,.利用向量的坐標(biāo)運算可得.再利用數(shù)量積運算,可得.利用數(shù)量積性質(zhì)可得,可得.再利用,,可得,即可得出【詳解】如圖所示,建立直角坐標(biāo)系則,,,,,及四邊形為矩形,,,.即點在直線上,,,,,,即(當(dāng)且僅當(dāng)或時取等號),綜上可得:故選:【點睛】本題考查了向量的坐標(biāo)運算、數(shù)量積運算及其性質(zhì)、不等式的性質(zhì)等基礎(chǔ)知識與基本技能方法,考查了推理能力和計算能力,屬于難題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)給定條件結(jié)合球的截面小圓性質(zhì)求出球O的半徑,再利用球的體積公式計算作答.【詳解】因邊長為3的正方形的四個頂點都在球上,則正方形的外接圓是球O的截面小圓,其半徑為,令正方形的外接圓圓心為,由球面的截面小圓性質(zhì)知是直角三角形,且有,而與對角線的夾角為45°,即是等腰直角三角形,球O半徑,所以球體積為.故答案為:【點睛】關(guān)鍵點睛:涉及求球的表面積、體積問題,利用球的截面小圓性質(zhì)是解決問題的關(guān)鍵.12、①.15②.24000【解析】設(shè)公司應(yīng)該把樓建成層,可知每平方米的購地費用,已知建筑5層樓房時,每平方米建筑費用為8000元,從中可得出建層的每平方米的建筑費用,然后列出式子求得其最小值,從而可求得答案【詳解】設(shè)公司應(yīng)該把樓建成層,則由題意得每平方米購地費用為(元),每平方米的建筑費用為(元),所以每平方米的平均綜合費用為,當(dāng)且僅當(dāng),即時取等號,所以公司應(yīng)把樓層建成15層,此時,該樓房每平方米的平均綜合費用最低為24000元,故答案為:15,2400013、【解析】由函數(shù)的性質(zhì)得,代入當(dāng)時的解析式求出的值,即可得解.【詳解】當(dāng)時,,,是上的奇函數(shù),故答案為:14、##【解析】根據(jù)給定條件結(jié)合二倍角的正切公式計算作答.【詳解】因,則,所以的值為.故答案為:15、【解析】由函數(shù)的圖象得到函數(shù)的周期,同時根據(jù)圖象的性質(zhì)求得一個單調(diào)增區(qū)間,然后利用周期性即可寫出所有的增區(qū)間.【詳解】由圖可知函數(shù)f(x)的最小正周期.如圖所示,一個周期內(nèi)的最低點和最高點分別記作,分別作在軸上的射影,記作,根據(jù)的對稱性可得的橫坐標(biāo)分別為,∴是函數(shù)f(x)的一個單調(diào)增區(qū)間,∴函數(shù)的單調(diào)增區(qū)間是,故答案為:,【點睛】本題關(guān)鍵在于掌握函數(shù)圖象的對稱性和周期性.一般往往先從函數(shù)的圖象確定函數(shù)中的各個參數(shù)的值,再利用函數(shù)的解析式和正弦函數(shù)的性質(zhì)求得單調(diào)區(qū)間,但是直接由圖象得到函數(shù)的周期,并根據(jù)函數(shù)的圖象的性質(zhì)求得一個單調(diào)增區(qū)間,進(jìn)而寫出所有的增區(qū)間,更為簡潔.16、①④⑤【解析】根據(jù)抽象函數(shù)的定義域,對數(shù)函數(shù)的性質(zhì)、冪函數(shù)的定義、對數(shù)不等式的求解方法,以及復(fù)合函數(shù)單調(diào)性的討論,對每一項進(jìn)行逐一分析,即可判斷和選擇.【詳解】對①:因為,,所以的定義域為,令,故,即的定義域為,故①正確;對②:當(dāng),,圖象恒過定點,故②錯誤;對③:若,則的圖象是兩條射線,故③錯誤;對④:原不等式等價于,故(無解)或,解得,故④正確;對⑤:實數(shù)應(yīng)滿足,解得,故⑤正確;綜上所述:正確結(jié)論的序號為①④⑤.【點睛】(1)抽象函數(shù)的定義域是一個難點,一般地,如果已知的定義域為,的定義域為,那么的定義域為;如果已知的定義域為,那么的定義域可取為.(2)形如的復(fù)合函數(shù),如果已知其在某區(qū)間上是單調(diào)函數(shù),我們不僅要考慮在給定區(qū)間上單調(diào)性,還要考慮到其在給定區(qū)間上總有成立.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、入射光線所在直線方程為2x-y-4=0,反射光線所在直線方程為2x+y-4=0【解析】如圖所示,作A點關(guān)于x軸的對稱點A′,顯然,A′坐標(biāo)為(3,-2),連接A′B,則A′B所在直線即為反射光線由兩點式可得直線A′B的方程為,即2x+y-4=0.同理,點B關(guān)于x軸的對稱點為B′(-1,-6),由兩點式可得直線AB′的方程為,即2x-y-4=0,∴入射光線所在直線方程為2x-y-4=0,反射光線所在直線方程為2x+y-4=0.考點:兩點式直線方程,對稱問題.18、(1)證明見解析(2)【解析】(1)通過證明AB⊥CD,AB⊥CC1,證明A1B1⊥平面CDC1,然后證明A1B1⊥C1D;(2)求出底面△DCE的面積,求出對應(yīng)的高,即點到底面DCE的距離,然后求解四面體M-CDE的體積,由三棱錐A﹣MDE的體積就是三棱錐M﹣CDE的體積得結(jié)論.【詳解】(1)證明:∵∠ACB=90°,AC=BC=2,∴AB⊥CD,AB⊥CC1,CD∩CC1=C,∴AB⊥平面CDC1,∵A1B1∥AB,∴A1B1⊥平面CDC1,∵C1D平面CDC1,∴A1B1⊥C1D;(2)解:三棱錐A﹣MDE的體積就是三棱錐M﹣CDE的體積,AC=BC=2,D,E分別為棱AB,BC的中點,M為棱AA1的中點.AA1=4,所以AM=2,AB⊥CD,三棱錐A﹣MDE的體積:【點睛】本題考查線面垂直,考查點到面的距離,解題的關(guān)鍵是利用線面垂直證明線線線垂直,利用等體積法求點到面的距離,是中檔題19、(1)(2)答案見解析【解析】(1)由三角恒等變換求出解析式,再求得最大值時的x的集合,(2)由五點法作圖,列出表格,并畫圖即可.【小問1詳解】令,函數(shù)取得最大值,解得,所以此時x集合為.【小問2詳解】表格如下:x0y11作圖如下,20、(1);(2)【解析】(1)根據(jù)三角函數(shù)的定義,平方關(guān)系以及點的位置可求出,再由商數(shù)關(guān)系即可求出;(2)利用誘導(dǎo)公式即可求出【小問1詳解】由三角函數(shù)定義知,所以,因,所以,所以.【小問2詳解】原式.21、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)(Ⅱ)利用判定定理證明線面平行時,關(guān)鍵是在平面內(nèi)找一條與已知直線平行的直線,解題時可先直觀判斷平面內(nèi)是否已有,若沒有,則需作出該直線,常考慮三角形的中位線、平行四邊形的對邊或過平行線分線段成比例等.證明直線和平面垂直的常用方法:(1)利用判定定理.(2)利用判定定理的推論.(3)利用面面平行的性質(zhì).(4)利用面面垂直的性質(zhì).(Ⅲ)判定面面垂直的方法(1)面面垂直的定義,即證兩平面所成的二面角為直角;(2)面面垂直的判定定理試題解析:(1)由已知得DE⊥AE,AE⊥EC.∵DE∩EC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- YC/T 618-2024卷煙物流配送中心作業(yè)動線管理指南
- 2025年度周轉(zhuǎn)材料租賃與施工現(xiàn)場臨時設(shè)施建設(shè)合同3篇
- 特定行業(yè)招聘代理合同
- 廢溶劑處理廠房建設(shè)施工合同
- 電影演員經(jīng)紀(jì)人合作合同
- 建筑機(jī)電升級浮動價施工合同
- 石油天然氣開采用地管理辦法
- 2025版科技園區(qū)廠房租賃及研發(fā)支持協(xié)議3篇
- 釀酒師聘用合同協(xié)議
- 老年公寓空置房間租賃協(xié)議
- 《水力發(fā)電廠機(jī)電設(shè)計規(guī)范》
- 剪映課件pptx-2024鮮版
- 超星爾雅學(xué)習(xí)通《創(chuàng)業(yè)法學(xué)(江西財經(jīng)大學(xué))》2024章節(jié)測試含答案(一)
- 2020-2021學(xué)年湖北省武漢市江漢區(qū)七年級(下)期末英語試卷(附答案詳解)
- 盾構(gòu)隧道管片生產(chǎn)施工方案
- 全媒體運營師-國家職業(yè)標(biāo)準(zhǔn)(2023年版)
- 高端行業(yè)用戶分析
- 2023年中國軟件行業(yè)基準(zhǔn)數(shù)據(jù)SSM-BK-202310
- 華為管理法讀后感
- 2024年中考英語復(fù)習(xí):閱讀七選五 專項練習(xí)題匯編(含答案解析)
- 馬克思主義與社會科學(xué)方法論概述(課件)
評論
0/150
提交評論