版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山東省濟(jì)南市歷城區(qū)濟(jì)南一中數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)圖象向右平移個單位長度后,得到函數(shù)的圖象關(guān)于直線對稱,則函數(shù)在上的值域是()A. B. C. D.2.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度3.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實數(shù)()A. B. C. D.4.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設(shè)平面平面,則下列結(jié)論中不成立的是()A.平面 B.C.當(dāng)時,平面 D.當(dāng)m變化時,直線l的位置不變5.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.06.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種7.從集合中隨機(jī)選取一個數(shù)記為,從集合中隨機(jī)選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.8.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.9.已知拋物線的焦點為,準(zhǔn)線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.10.函數(shù)的圖象大致為()A. B.C. D.11.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.412.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.小李參加有關(guān)“學(xué)習(xí)強(qiáng)國”的答題活動,要從4道題中隨機(jī)抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.14.已知函數(shù)的最大值為3,的圖象與y軸的交點坐標(biāo)為,其相鄰兩條對稱軸間的距離為2,則15.設(shè)f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.16.拋物線上到其焦點距離為5的點有_______個.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且滿足,各項均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和18.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.19.(12分)聯(lián)合國糧農(nóng)組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關(guān)關(guān)系,我們以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo),請完成如下數(shù)據(jù)處理表格:年份—20140需求量—2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.20.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)設(shè)函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.2、A【解析】
根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.3、B【解析】
求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點可計算參數(shù)值.4、C【解析】
根據(jù)線面平行與垂直的判定與性質(zhì)逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關(guān)系.屬于中檔題.5、D【解析】分析:因為題設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系.6、C【解析】
根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.7、A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.8、C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項.點睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時,要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.9、A【解析】
求出拋物線的焦點坐標(biāo),利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點F(1,0),準(zhǔn)線方程為x=?1,
過點P作PM垂直于準(zhǔn)線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當(dāng)時,,當(dāng)時,,,綜上:.故選:A.【點睛】本題主要考查拋物線的定義、性質(zhì)的簡單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計算能力,屬于中檔題.10、A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當(dāng)時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.11、D【解析】
先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因為成等比數(shù)列,所以,解得.【點睛】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.12、A【解析】
由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
從四道題中隨機(jī)抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機(jī)抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【點睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準(zhǔn)確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).14、【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數(shù)的圖像與性質(zhì).15、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導(dǎo)數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,當(dāng)t>1時,S′>0,當(dāng)0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導(dǎo)數(shù)求面積的最值問題,意在考查學(xué)生的計算能力和應(yīng)用能力.16、2【解析】
設(shè)符合條件的點,由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點,則,所以符合條件的點有2個.故答案為:2【點睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由化為,利用數(shù)列的通項公式和前n項和的關(guān)系,得到是首項為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數(shù)列從開始成等差數(shù)列,,代入得是首項為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數(shù)列的通項公式和前n項和的關(guān)系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.18、(1)(ⅰ)證明見解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點,連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)(?。┳C明:連接交于點,連接,,因為為線段的中點,所以,因為,所以因為∥所以四邊形為平行四邊形.所以又因為,所以又因為平面,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因為,,所以以為原點建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因為直線與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點是否存在的判斷與求法,考查空間中線線,線面,面面的位置關(guān)系等知識,考查了推理能力與計算能力,屬于中檔題.19、(1)見解析;(2)能夠滿足.【解析】
(1)根據(jù)表中數(shù)據(jù),結(jié)合以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo)的要求即可完成表格;(2)根據(jù)表中及所給公式可求得線性回歸方程,由線性回歸方程預(yù)測2020年的糧食需求量,即可作出判斷.【詳解】(1)由所給數(shù)據(jù)和已知條件,對數(shù)據(jù)處理表格如下:年份—2014024需求量—25701929(2)由題意可知,變量與之間具有線性相關(guān)關(guān)系,由(1)中表格可得,,,,.由上述計算結(jié)果可知,所求回歸直線方程為,利用回歸直線方程,可預(yù)測2020年的糧食需求量為:(萬噸),因為,故能夠滿足該地區(qū)的糧食需求.【點睛】本題考查了線性回歸直線的求法及預(yù)測應(yīng)用,屬于基礎(chǔ)題.20、(1)證明見解析;(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年沿街店鋪物業(yè)租賃合同3篇
- 2025年度集裝箱班輪運輸合同標(biāo)的運輸成本優(yōu)化服務(wù)協(xié)議4篇
- 2025年度車庫門安全性能提升與維修合同3篇
- 二零二四年度醫(yī)療器械產(chǎn)品營銷策劃合同規(guī)范3篇
- 二零二五版國防生實訓(xùn)培養(yǎng)合同3篇
- 2025版事故車事故處理與車輛事故鑒定合同3篇
- 2025年度深海油氣田鉆井平臺租賃合同3篇
- 個性化離婚合同模板(2024年版)版B版
- 2025年度車輛報廢回收與環(huán)保處理合同4篇
- 二零二五版工程機(jī)械設(shè)備銷售與售后服務(wù)體系合同3篇
- 江蘇省南京市第二十九中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 2024年公需科目培訓(xùn)考試題及答案
- 2024年江蘇鑫財國有資產(chǎn)運營有限公司招聘筆試沖刺題(帶答案解析)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫含答案
- 廣西桂林市2023-2024學(xué)年高二上學(xué)期期末考試物理試卷
- 財務(wù)指標(biāo)與財務(wù)管理
- 部編版二年級下冊道德與法治第三單元《綠色小衛(wèi)士》全部教案
- 保安春節(jié)安全生產(chǎn)培訓(xùn)
- 初一語文上冊基礎(chǔ)知識訓(xùn)練及答案(5篇)
- 血液透析水處理系統(tǒng)演示
- GB/T 27030-2006合格評定第三方符合性標(biāo)志的通用要求
評論
0/150
提交評論