版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省興平市西郊中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,若斜邊長(zhǎng)為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.82.空間直角坐標(biāo)系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.3.已知直線交圓于A,B兩點(diǎn),若點(diǎn)滿足,則直線l被圓C截得線段的長(zhǎng)是()A.3 B.2C. D.44.已知橢圓:的左、右焦點(diǎn)分別為、,為坐標(biāo)原點(diǎn),為橢圓上一點(diǎn).與軸交于一點(diǎn),,則橢圓C的離心率為()A. B.C. D.5.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則6.函數(shù)的值域?yàn)椋ǎ〢. B.C. D.7.函數(shù)在和處的導(dǎo)數(shù)的大小關(guān)系是()A. B.C. D.不能確定8.在中,若,則()A.150° B.120°C.60° D.30°9.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.10.2021年6月17日9時(shí)22分,搭載神舟十二號(hào)載人飛船的長(zhǎng)征二號(hào)F遙十二運(yùn)載火箭,在酒泉衛(wèi)星發(fā)射中心點(diǎn)火發(fā)射.此后,神舟十二號(hào)載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,并快速完成與“天和”核心艙的對(duì)接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個(gè)月,開展艙外維修維護(hù),設(shè)備更換,科學(xué)應(yīng)用載荷等一系列操作.已知神舟十二號(hào)飛船的運(yùn)行軌道是以地心為焦點(diǎn)的橢圓,設(shè)地球半徑為R,其近地點(diǎn)與地面的距離大約是,遠(yuǎn)地點(diǎn)與地面的距離大約是,則該運(yùn)行軌道(橢圓)的離心率大約是()A. B.C. D.11.某機(jī)構(gòu)通過抽樣調(diào)查,利用列聯(lián)表和統(tǒng)計(jì)量研究患肺病是否與吸煙有關(guān),計(jì)算得,經(jīng)查對(duì)臨界值表知,,現(xiàn)給出四個(gè)結(jié)論,其中正確的是()A.因?yàn)?,故?0%的把握認(rèn)為“患肺病與吸煙有關(guān)"B.因?yàn)?,故?5%把握認(rèn)為“患肺病與吸煙有關(guān)”C.因?yàn)?,故?0%的把握認(rèn)為“患肺病與吸煙無關(guān)”D.因?yàn)?,故?5%的把握認(rèn)為“患肺病與吸煙無關(guān)”12.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列公差不為0,且,,等比數(shù)列,則_________.14.在空間四邊形ABCD中,AD=2,BC=2,E,F(xiàn)分別是AB,CD的中點(diǎn),EF=,則異面直線AD與BC所成角的大小為____.15.已知橢圓的左、右焦點(diǎn)分別為,若橢圓上的點(diǎn)P滿足軸,,則該橢圓的離心率為___________16.設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長(zhǎng)方體中,,若點(diǎn)P為棱上一點(diǎn),且,Q,R分別為棱上的點(diǎn),且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.18.(12分)已知數(shù)列是遞增的等差數(shù)列,,若成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和,求.19.(12分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項(xiàng)公式及前n項(xiàng)和.20.(12分)已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6⑴求橢圓C的標(biāo)準(zhǔn)方程;⑵已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度21.(12分)已知?jiǎng)狱c(diǎn)在橢圓:()上,,為橢圓左、右焦點(diǎn).過點(diǎn)作軸的垂線,垂足為,點(diǎn)滿足,且點(diǎn)的軌跡是過點(diǎn)的圓(1)求橢圓方程;(2)過點(diǎn),分別作平行直線和,設(shè)交橢圓于點(diǎn),,交橢圓于點(diǎn),,求四邊形的面積的最大值22.(10分)已知某中學(xué)高二物化生組合學(xué)生的數(shù)學(xué)與物理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如下表:若抽取了名學(xué)生,成績(jī)分為A(優(yōu)秀),B(良好),C(及格)三個(gè)等級(jí),設(shè),分別表示數(shù)學(xué)成績(jī)與物理成績(jī),例如:表中物理成績(jī)?yōu)锳等級(jí)的共有(人),數(shù)學(xué)成績(jī)?yōu)锽等級(jí)且物理成績(jī)?yōu)镃等級(jí)的共有8人,已知與均為A等級(jí)的概率是0.07(1)設(shè)在該樣本中,數(shù)學(xué)成績(jī)的優(yōu)秀率是30%,求,的值;(2)已知,,求數(shù)學(xué)成績(jī)?yōu)锳等級(jí)的人數(shù)比C等級(jí)的人數(shù)多的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由斜二測(cè)還原圖形計(jì)算即可求得結(jié)果.【詳解】在斜二測(cè)直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C2、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標(biāo)運(yùn)算可求得,再由平面平行和距離公式計(jì)算可得選項(xiàng).【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.3、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進(jìn)而判斷△的形狀,即可得直線l被圓C截得線段的長(zhǎng).【詳解】∵點(diǎn)為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長(zhǎng)是2故選:B4、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關(guān)系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C5、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關(guān)系即可判斷.【詳解】解:對(duì)于選項(xiàng)A:若,則與可能平行,可能相交,可能異面,故選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B:若,則,故選項(xiàng)B錯(cuò)誤;對(duì)于選項(xiàng)C:當(dāng)時(shí)不滿足,故選項(xiàng)C錯(cuò)誤;綜上,可知選項(xiàng)D正確.故選:D.6、C【解析】根據(jù)基本不等式即可求出【詳解】因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以函數(shù)的值域?yàn)楣蔬x:C7、A【解析】求出函數(shù)導(dǎo)數(shù)即可比較.【詳解】,,所以,即.故選:A.8、C【解析】根據(jù)正弦定理將化為邊之間的關(guān)系,再結(jié)合余弦定理可得答案.【詳解】若,則根據(jù)正弦定理得:,即,而,故,故選:C.9、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.10、A【解析】以運(yùn)行軌道長(zhǎng)軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運(yùn)行軌道長(zhǎng)軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A11、A【解析】根據(jù)給定條件利用獨(dú)立性檢驗(yàn)的知識(shí)直接判斷作答.【詳解】因,且,由臨界值表知,,,所以有90%的把握認(rèn)為“患肺病與吸煙有關(guān)”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認(rèn)為“患肺病與吸煙有關(guān)”,也不能確定有95%的把握認(rèn)為“患肺病與吸煙無關(guān)”,即B,D都不正確.故選:A12、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點(diǎn)即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因?yàn)殡p曲線經(jīng)過點(diǎn),所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)等差數(shù)列的公差為,由,,等比數(shù)列,可得,則的值可求【詳解】解:設(shè)等差數(shù)列的公差為,,,等比數(shù)列,,則,得,故答案為:14、【解析】由已知找到異面直線所成角的平面角,再運(yùn)用余弦定理可得答案.【詳解】解:設(shè)BD的中點(diǎn)為O,連接EO,F(xiàn)O,所以,則∠EOF(或其補(bǔ)角)就是異面直線AD,BC所成的角的平面角,又因?yàn)镋O=AD=1,F(xiàn)O=BC=,EF=.根據(jù)余弦定理得=-,所以∠EOF=150°,異面直線AD與BC所成角的大小為30°.故答案為:30°.15、【解析】由題意分析為直角三角形,得到關(guān)于a、c的齊次式,即可求出離心率.【詳解】設(shè),則.由橢圓的定義可知:,所以.所以因軸,所以為直角三角形,由勾股定理得:,即,即,所以離心率.故答案為:16、2【解析】畫出不等式組對(duì)應(yīng)的可行域,平移動(dòng)直線后可得目標(biāo)函數(shù)的最小值.【詳解】不等式組對(duì)應(yīng)的可行域如圖所示:將初始直線平移至點(diǎn)時(shí),可取最小值,由可得,故,故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標(biāo)原點(diǎn),射線方向?yàn)閤,y,z軸正方向建立空間直角坐標(biāo)系.當(dāng)時(shí),,所以,設(shè)平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長(zhǎng)方體中,因?yàn)槠矫妫云矫嫫矫?,因?yàn)槠矫媾c平面交于,因?yàn)樗倪呅螢檎叫?,所以,所以平面,即為平面的一個(gè)法向量,,所以,又平面的法向量為,所以.18、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意列出方程組,求得的值,即可求解;(2)由(1)求得,結(jié)合“裂項(xiàng)法”即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)?,若成等比?shù)列,可得,解得,所以數(shù)列的通項(xiàng)公式為.(2)由(1)可得,所以.【點(diǎn)睛】關(guān)于數(shù)列的裂項(xiàng)法求和的基本策略:1、基本步驟:裂項(xiàng):觀察數(shù)列的通項(xiàng),將通項(xiàng)拆成兩項(xiàng)之差的形式;累加:將數(shù)列裂項(xiàng)后的各項(xiàng)相加;消項(xiàng):將中間可以消去的項(xiàng)相互抵消,將剩余的有限項(xiàng)相加,得到數(shù)列的前項(xiàng)和.2、消項(xiàng)的規(guī)律:消項(xiàng)后前邊剩幾項(xiàng),后邊就剩幾項(xiàng),前邊剩第幾項(xiàng),后邊就剩倒數(shù)第幾項(xiàng).19、(1),,證明見解析(2),【解析】(1)根據(jù)遞推關(guān)系求出,,對(duì)遞推公式變形,即可得證;(2)結(jié)合(1)求得通項(xiàng)公式,分組求和.【小問1詳解】因?yàn)?,且所以,,∵,∴,∵,∴,且,∴?shù)列是等比數(shù)列.【小問2詳解】由(1)可知是以為首項(xiàng),以3為公比的等比數(shù)列,即,即;.20、(1);(2)【解析】(1)由焦點(diǎn)坐標(biāo)可求c值,a值,然后可求出b的值.進(jìn)而求出橢圓C的標(biāo)準(zhǔn)方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達(dá)定理及弦長(zhǎng)公式求出|AB|的長(zhǎng)度【詳解】解:⑴由,長(zhǎng)軸長(zhǎng)為6得:所以∴橢圓方程為⑵設(shè),由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡(jiǎn)并整理得所以又【點(diǎn)睛】本題考查橢圓的方程和性質(zhì),考查韋達(dá)定理及弦長(zhǎng)公式的應(yīng)用,考查運(yùn)算能力,屬于中檔題21、(1);(2)【解析】(1)設(shè)點(diǎn)和,由題意可得點(diǎn)的軌跡方程,將點(diǎn)Q的坐標(biāo)代入T的方程計(jì)算出即可;(2)設(shè)的方程,和,聯(lián)立橢圓方程并消元得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理得到,進(jìn)而求出和,根據(jù)平行線間的距離公式可得與的距離,得出所求四邊形面積的表達(dá)式,結(jié)合換元法和基本不等式化簡(jiǎn)求值即可.【詳解】解:(1)設(shè)點(diǎn),,則點(diǎn),,,∵,∴,∴,∵點(diǎn)在橢圓上,∴,即為點(diǎn)的軌跡方程又∵點(diǎn)的軌跡是過的圓,∴,解得,所以橢圓的方程為(2)由題意,可設(shè)的方程為,聯(lián)立方程,得設(shè),,則,且,所以,同理,又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 住宅小區(qū)垃圾運(yùn)輸服務(wù)合同
- 4S店裝修附加協(xié)議
- 廠房改造工程裝修合同樣本
- 冷凍蔬菜運(yùn)輸合同范本
- 4S店水電安裝合同模板
- 3對(duì)3班級(jí)籃球比賽活動(dòng)方案
- 醫(yī)院裝修工程合同協(xié)議書
- 商鋪營(yíng)銷策劃方案
- 花店裝修租賃合同樣本
- 健身房吊頂改造合同
- 大數(shù)據(jù)與人工智能概論
- 改進(jìn)維持性血液透析患者貧血狀況PDCA
- 清創(chuàng)縫合完整演示文稿
- 日本文學(xué)講解
- 貼面 貼面修復(fù)
- 一年級(jí)上心理健康作業(yè)上
- 2023年滁州天長(zhǎng)市幼兒園教師招聘筆試《幼兒保教知識(shí)與能力》題庫(kù)及答案解析
- GB/T 41986-2022全釩液流電池設(shè)計(jì)導(dǎo)則
- WS/T 407-2012醫(yī)療機(jī)構(gòu)內(nèi)定量檢驗(yàn)結(jié)果的可比性驗(yàn)證指南
- 第8課 三國(guó)至隋唐的文化 課件 高中歷史統(tǒng)編版2019必修中外歷史綱要上冊(cè)
- 廣東省深圳市六年級(jí)上冊(cè)數(shù)學(xué)期中考試試卷(含答案)
評(píng)論
0/150
提交評(píng)論