版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江西省宜春市靖安中學數(shù)學高二上期末經(jīng)典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.把點隨機投入長為,寬為的矩形內(nèi),則點與矩形四邊的距離均不小于的概率為()A. B.C. D.2.直線經(jīng)過兩點,那么其斜率為()A. B.C. D.3.已知向量,若,則()A. B.5C.4 D.4.已知直線與圓相切,則的值是()A. B.C. D.5.已知直線和互相平行,則實數(shù)()A. B.C.或 D.或6.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.7.已知數(shù)列為等比數(shù)列,,則的值為()A. B.C. D.28.在正項等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.329.已知函數(shù)的圖象在點處的切線與直線平行,若數(shù)列的前項和為,則的值為()A. B.C. D.10.已知空間四邊形,其對角線、,、分別是邊、的中點,點在線段上,且使,用向量,表示向量是A. B.C. D.11.圓的圓心到直線的距離為2,則()A. B.C. D.212.函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點有()A.1個 B.2個C.3個 D.4個二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,則__________.14.已知橢圓C:的左右焦點分別為,,O為坐標原點,以下說法正確的是______①過點的直線與橢圓C交于A,B兩點,則的周長為8②橢圓C上存在點P,使得③橢圓C的離心率為④P為橢圓上一點,Q為圓上一點,則線段PQ的最大長度為315.設(shè)為第二象限角,若,則__________16.若,則___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是正項數(shù)列,,且.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,若對恒成立,求實數(shù)的取值范圍.18.(12分)已知數(shù)列滿足,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項公式;(2)若,求數(shù)列的前項和.19.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實數(shù)x的取值范圍.(2)若p是q的充分條件,求實數(shù)m的取值范圍;20.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.(1)求直線的普通方程,曲線C的直角坐標方程;(2)設(shè)直線與曲線C相交于A,B兩點,點,求的值.21.(12分)已知橢圓的標準方程為:,若右焦點為且離心率為(1)求橢圓的方程;(2)設(shè),是上的兩點,直線與曲線相切且,,三點共線,求線段的長22.(10分)已知,是函數(shù)的兩個極值點.(1)求的解析式;(2)記,,若函數(shù)有三個零點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】確定矩形四邊的距離均不小于的點構(gòu)成的區(qū)域,由幾何概型面積型的公式計算可得結(jié)果.【詳解】若點與矩形四邊的距離均不小于,則其落在如圖所示的陰影區(qū)域內(nèi),所求概率.故選:A.2、B【解析】由兩點的斜率公式可得答案.【詳解】直線經(jīng)過兩點,則故選:B3、B【解析】根據(jù)向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B4、D【解析】直線與圓相切,直接通過求解即可.【詳解】因為直線與圓相切,所以圓心到直線的距離,所以,.故選:D5、C【解析】根據(jù)題意,結(jié)合兩直線的平行,得到且,即可求解.【詳解】由題意,直線和互相平行,可得且,即且,解得或.故選:C.6、D【解析】根據(jù)圓的割線定理,結(jié)合圓的性質(zhì)進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D7、B【解析】根據(jù)等比數(shù)列的性質(zhì)計算.【詳解】由等比數(shù)列的性質(zhì)可知,且等比數(shù)列奇數(shù)項的符號相同,所以,即.故選:B8、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因為和為方程的兩根,所以,又因為數(shù)列是等比數(shù)列,所以,故選:C9、A【解析】函數(shù)的圖象在點處的切線與直線平行,利用導函數(shù)的幾何含義可以求出,轉(zhuǎn)化求解數(shù)列的通項公式,進而由數(shù)列的通項公式,利用裂項相消法求和即可【詳解】解:∵函數(shù)的圖象在點處的切線與直線平行,由求導得:,由導函數(shù)得幾何含義得:,可得,∴,所以,∴數(shù)列的通項為,所以數(shù)列的前項的和即為,則利用裂項相消法可以得到:所以數(shù)列的前2021項的和為:.故選:A.10、C【解析】根據(jù)所給的圖形和一組基底,從起點出發(fā),把不是基底中的向量,用是基底的向量來表示,就可以得到結(jié)論【詳解】解:故選:【點睛】本題考查向量的基本定理及其意義,解題時注意方法,即從要表示的向量的起點出發(fā),沿著空間圖形的棱走到終點,若出現(xiàn)不是基底中的向量的情況,再重復這個過程,屬于基礎(chǔ)題11、B【解析】配方求出圓心坐標,再由點到直線距離公式計算【詳解】圓的標準方程是,圓心為,∴,解得故選:B.【點睛】本題考查圓的標準方程,考查點到直線距離公式,屬于基礎(chǔ)題12、B【解析】利用極值點的定義求解.【詳解】由導函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點:第一個點處導數(shù)左正右負,第二個點處導數(shù)左負右正,第三個點處導數(shù)左正右正,第四個點處導數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極大值點有2個,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意求得,得到,利用等差數(shù)列的求和公式,求得,結(jié)合裂項法求和法,即可求解.【詳解】由,可得,即,因為,所以,又因為,所以,可得,所以,所以.故答案為:.14、①②④【解析】根據(jù)橢圓的幾何性質(zhì)結(jié)合的周長計算可判斷①;根據(jù),可通過以為直徑作圓,是否與橢圓相交判斷②;求出橢圓的離心率可判斷③;計算橢圓上的點到圓心的距離的最大值,即可判斷④.【詳解】對于①,由題意知:的周長等于,故①正確;對于②,,故以為直徑作圓,與橢圓相交,交點即設(shè)為P,故橢圓C上存在點P,使得,故②正確;對于③,,故③錯誤;對于④,設(shè)P為橢圓上一點,坐標為,則,故,因為,所以的最大值為2,故線段PQ的最大長度為2+1=3,故④正確,故答案為:①②④.15、【解析】先求出,再利用二倍角公式求的值.【詳解】因為為第二象限角,若,所以.所以.故答案為【點睛】本題主要考查同角三角函數(shù)的平方關(guān)系,考查二倍角的正弦公式,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.16、##0.5【解析】導數(shù)的定義公式的變形應用,要求分子分母的變化量相同.【詳解】故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由條件因式分解可得,從而得到,即可得出答案.(2)由(1)可得,由錯位相減法求和得到,由題意即即對恒成立,分析數(shù)列的單調(diào)性,得出答案.【小問1詳解】由,得∵∴∴∴數(shù)列是公比為2的等比數(shù)列.∵,∴.【小問2詳解】由(1)知,∴∴①∴②①-②得∴∴由對恒成立得對恒成立即對恒成立,又是遞減數(shù)列∴時得到最大值∴,即∴的取值范圍是.18、(1)證明見解析,;(2).【解析】(1)由已知條件,可得為常數(shù),從而得證數(shù)列是等比數(shù)列,進而可得數(shù)列的通項公式;(2)由(1)可得,又,所以,所以,利用錯位相減法即可求解數(shù)列的前項和.【小問1詳解】證明:由題意,因為,,,所以,,所以數(shù)列是以2為首項,3為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.19、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;(2)由p是q的充分條件,轉(zhuǎn)化為集合的包含關(guān)系,從而可求實數(shù)m的取值范圍.【詳解】(1)由p:為真,解得.(2)q:,若p是q的充分條件,則是的子集所以.即.20、(1)直線的普通方程為;曲線C的直角坐標方程為(2)【解析】(1)根據(jù)轉(zhuǎn)換關(guān)系將參數(shù)方程和極坐標方程轉(zhuǎn)化為直角坐標方程即可;(2)將直線的參數(shù)方程化為標準形式,代入曲線C的直角坐標方程,設(shè)點A,B對應的參數(shù)分別為,利用韋達定理即可得出答案.【小問1詳解】解:將直線的參數(shù)方程中的參數(shù)消去得,則直線的普通方程為,由曲線C的極坐標方程為,得,即,由得曲線C的直角坐標方程為;【小問2詳解】解:點滿足,故點在直線上,將直線的參數(shù)方程化為標準形式(為參數(shù)),代入曲線C的直角坐標方程為,得,設(shè)點A,B對應的參數(shù)分別為,則,所以.21、(1);(2).【解析】(1)根據(jù)橢圓的焦點、離心率求橢圓參數(shù),寫出橢圓方程即可.(2)由(1)知曲線為,討論直線的存在性,設(shè)直線方程聯(lián)立橢圓方程并應用韋達定理求弦長即可.【詳解】(1)由題意,橢圓半焦距且,則,又,∴橢圓方程為;(2)由(1)得,曲線為當直線的斜率不存在時,直線,不合題意:當直線的斜率存在時,設(shè),又,,三點共線,可設(shè)直線,即,由直線與曲線相切可得,解得,聯(lián)立,得,則,,∴.22、(1);(2)【解析】(1)根據(jù)極值點的定義,可知方程的兩個解即為,,代入即得結(jié)果;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)滑雪教學合作合同書2024版版B版
- 西安交通大學《基礎(chǔ)護理學基本技能1》2023-2024學年第一學期期末試卷
- 武漢晴川學院《心理咨詢倫理》2023-2024學年第一學期期末試卷
- 專業(yè)塔吊故障檢修服務協(xié)議樣本版A版
- 二零二五版建筑垃圾再生利用與建材企業(yè)合作協(xié)議3篇
- 二零二五年度股權(quán)代持與公司治理創(chuàng)新合同范本2篇
- 2024版供貨協(xié)議范本
- 2024年網(wǎng)絡(luò)安全服務提供商合作協(xié)議 with 服務內(nèi)容包括攻防演練、安全監(jiān)控
- 二零二五版汽車進口運輸與知識產(chǎn)權(quán)保護合同3篇
- 2025年度綠色能源項目采購代理委托服務協(xié)議3篇
- 2024年高考新課標Ⅱ卷語文試題講評課件
- 無人機航拍技術(shù)教案(完整版)
- 人教PEP版(2024)三年級上冊英語Unit 4《Plants around us》單元作業(yè)設(shè)計
- 《保密法》培訓課件
- 醫(yī)院項目竣工驗收和工程收尾階段的管理措施專項方案
- 2024年涉密人員考試試題庫保密基本知識試題附答案(考試直接用)
- 2024年桂林中考物理試卷
- DL∕T 5362-2018 水工瀝青混凝土試驗規(guī)程
- (正式版)JC∕T 60023-2024 石膏條板應用技術(shù)規(guī)程
- DL-T5054-2016火力發(fā)電廠汽水管道設(shè)計規(guī)范
- (權(quán)變)領(lǐng)導行為理論
評論
0/150
提交評論