版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省廈門市湖里區(qū)雙十中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.2.如圖,已知雙曲線的左右焦點分別為、,,是雙曲線右支上的一點,,直線與軸交于點,的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.3.已知直線l的方向向量,平面α的一個法向量為,則直線l與平面α的位置關(guān)系是()A.平行 B.垂直C.在平面內(nèi) D.平行或在平面內(nèi)4.設(shè)等比數(shù)列的前項和為,且,則()A. B.C. D.5.工業(yè)生產(chǎn)者出廠價格指數(shù)(PRoduceRPRiceIndexfoRIndustRialPRoducts,簡稱PPI)是反映工業(yè)企業(yè)產(chǎn)品第一次出售時的出廠價格的變化趨勢和變動幅度,是反映某一時期生產(chǎn)領(lǐng)域價格變動情況的重要經(jīng)濟指標,也是制定有關(guān)經(jīng)濟政策和國民經(jīng)濟核算的重要依據(jù).根據(jù)下面提供的我國2020年1月—2021年11月的工業(yè)生產(chǎn)者出廠價格指數(shù)的月度同比(將上一年同月作為基期進行對比的價格指數(shù))和月度環(huán)比(將上月作為基期進行對比的價格指數(shù))漲跌情況的折線圖判斷,以下結(jié)論正確的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月減小D.2021年1月—11月各月的PPI均高于2020年同期水平6.我國古代的數(shù)學(xué)名著《九章算術(shù)》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請問第二天織布的尺數(shù)是()A. B.C. D.7.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種8.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.149.已知奇函數(shù),則的解集為()A. B.C. D.10.若圓與直線相切,則()A.3 B.或3C. D.或11.設(shè)雙曲線的左、右頂點分別為、,點在雙曲線上第一象限內(nèi)的點,若的三個內(nèi)角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.12.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則的前20項和___________.14.設(shè)圓,圓,則圓有公切線___________條.15.經(jīng)過點,圓心在x軸正半軸上,半徑為5的圓的方程為________16.若,則與向量同方向的單位向量的坐標為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知菱形的頂點和所在直線的方程為.(1)求對角線所在直線的一般方程;(2)求所在直線的一般方程.18.(12分)已知定點,動點滿足,設(shè)點的軌跡為.(1)求軌跡的方程;(2)若點分別是圓和軌跡上的點,求兩點間的最大距離.19.(12分)設(shè)橢圓的左、右焦點分別為,,離心率為,短軸長為.(1)求橢圓的標準方程;(2)設(shè)左、右頂點分別為、,點在橢圓上(異于點、),求的值;(3)過點作一條直線與橢圓交于兩點,過作直線的垂線,垂足為.試問:直線與是否交于定點?若是,求出該定點的坐標,否則說明理由.20.(12分)已知直線與雙曲線交于,兩點,為坐標原點(1)當時,求線段的長;(2)若以為直徑的圓經(jīng)過坐標原點,求的值21.(12分)一杯100℃的開水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設(shè)每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數(shù)列,并求出的通項公式;(3)當水溫在40℃到55℃之間時(包括40℃和55℃),為最適合飲用的溫度,則在水燒開后哪個時間段飲用最佳.(參考數(shù)據(jù):)22.(10分)如圖,五邊形為東京奧運會公路自行車比賽賽道平面設(shè)計圖,根據(jù)比賽需要,在賽道設(shè)計時需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(2)在上述條件下,如何設(shè)計才能使折線賽道(即)的長度最大,并求最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.2、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長的關(guān)系求出雙曲線實半軸長a,再利用離心率公式計算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對稱性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點睛】結(jié)論點睛:二直角邊長為a,b,斜邊長為c的直角三角形內(nèi)切圓半徑.3、D【解析】根據(jù)題意,結(jié)合線面位置關(guān)系的向量判斷方法,即可求解.【詳解】根據(jù)題意,因為,所以,所以直線l與平面α的位置關(guān)系是平行或在平面內(nèi)故選:D4、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項和公式計算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C5、D【解析】根據(jù)折線圖中同比、環(huán)比的正負情況,結(jié)合各選項的描述判斷正誤.【詳解】A:2020年前5個月PPI在逐月減小,錯誤;B:2020年各月同比為負值,即低于2019年同期水平,錯誤;C:2021年1月—11月各月的PPI環(huán)比為正值,即逐月增大,錯誤;D:2021年1月—11月各月的PPI同比為正值,即高于2020年同期水平,正確.故選:D.6、C【解析】根據(jù)等比數(shù)列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)其首項為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C7、C【解析】先把4本書按2,1,1分為3組,再全排列求解.【詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C8、B【解析】利用等比數(shù)列的基本量進行計算即可【詳解】設(shè)等比數(shù)列的公比為,則,所以故選:B9、A【解析】先由求出的值,進而可得的解析式,對求導(dǎo),利用基本不等式可判斷恒成立,可判斷的單調(diào)性,根據(jù)單調(diào)性脫掉,再解不等式即可.【詳解】的定義域為,因為是奇函數(shù),所以,可得:,所以,經(jīng)檢驗是奇函數(shù),符合題意,所以,因為,所以,當且僅當即時等號成立,所以在上單調(diào)遞增,由可得,即,解得:或,所以的解集為,故選:A.10、B【解析】根據(jù)圓與與直線相切,利用圓心到直線的距離等于半徑求解.【詳解】圓的標準方程為:,則圓心為,半徑為,因為圓與與直線相切,所以圓心到直線的距離等于半徑,即,解得或,故選:B11、B【解析】設(shè)點,其中,,求得,且有,,利用兩角和的正切公式可求得的值,進而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點、,設(shè)點,其中,,且,,且,,,所以,,,因為,所以,,則,因此,該雙曲線漸近線方程為.故選:B.12、C【解析】由題意確定流程圖的功能,然后計算其輸出值即可.【詳解】運行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項求和可得:.故選:C.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)(2)要識別、運行程序框圖,理解框圖所解決的實際問題(3)按照題目的要求完成解答并驗證二、填空題:本題共4小題,每小題5分,共20分。13、135【解析】直接利用數(shù)列的遞推關(guān)系式寫出相鄰四項之和,進而求出數(shù)列的和.【詳解】數(shù)列滿足,所以,故,當時,,當時,,,當時,,所以.故答案為:135.14、2【解析】將圓轉(zhuǎn)化成標準式,結(jié)合圓心距判斷兩圓位置關(guān)系,進而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:215、【解析】設(shè)圓方程為,代入原點計算得到答案.【詳解】設(shè)圓方程為經(jīng)過點,代入圓方程則圓方程為故答案為【點睛】本題考查了圓方程的計算,設(shè)出圓方程是解題的關(guān)鍵.16、【解析】由空間向量的模的計算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因為,所以,所以與向量同方向的單位向量的坐標為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)首先求的中點,再利用垂直關(guān)系求直線的斜率,即可求解;(2)首先求點的坐標,再求直線的斜率,求得直線的斜率,利用點斜式直線方程,即可求解.【小問1詳解】由和得:中點四邊形為菱形,,且中點,對角線所在直線方程為:,即:.【小問2詳解】由,解得:,,,,直線的方程為:,即:.18、(1)(2)【解析】(1)設(shè)動點,根據(jù)條件列出方程,化簡求解即可;(2)設(shè),求出圓心到軌跡上點的距離,配方求最值即可得解.【小問1詳解】設(shè)動點,則,,,又,∴,化簡得,即,∴動點的軌跡E的方程為.【小問2詳解】設(shè),圓心到軌跡E上的點的距離∴當時,,∴.19、(1);(2);(3)是,.【解析】(1)由題意,列出所滿足的等量關(guān)系式,結(jié)合橢圓中的關(guān)系,求得,從而求得橢圓的方程;(2)寫出,設(shè),利用斜率坐標公式求得兩直線斜率,結(jié)合點在橢圓上,得出,從而求得結(jié)果;(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,結(jié)合韋達定理,得到,結(jié)合直線的方程,得到直線所過的定點坐標.【詳解】(1)由題意可知,,又,所以,所以橢圓的標準方程為:.(2),設(shè),因為點在橢圓上,所以,,又,.(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,所以,所以,又直線的方程為:,令,則,所以直線恒過,同理,直線恒過,即直線與交于定點.【點睛】思路點睛:該題考查是有關(guān)橢圓的問題,解題思路如下:(1)根據(jù)題中所給的條件,結(jié)合橢圓中的關(guān)系,建立方程組求得橢圓方程;(2)根據(jù)斜率坐標公式,結(jié)合點在橢圓上,整理求得斜率之積,可以當結(jié)論來用;(3)將直線與橢圓方程聯(lián)立,結(jié)合韋達定理,結(jié)合直線方程,求得其過的定點.20、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長公式可求弦長.(2)根據(jù)圓過原點可得,設(shè),從而,聯(lián)立直線方程和雙曲線方程后利用韋達定理化簡前者可得所求的參數(shù)的值.【小問1詳解】當時,直線,設(shè),由可得,此時,故.【小問2詳解】設(shè),因為以為直徑的圓經(jīng)過坐標原點,故,故,由可得,故且,故.而可化為即,因為,所以,解得,結(jié)合其范圍可得.21、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見解析,,;(3)在水燒開后4到7分鐘飲用最佳.【解析】(1)根據(jù)給定條件設(shè)第n分鐘后的水溫為,探求出與的關(guān)系即可計算作答.(2)利用(1)的信息,列式變形、推導(dǎo)即可得證,進而求出的通項公式.(3)由(2)的結(jié)論列不等式,借助對數(shù)函數(shù)的性質(zhì)求解即得.【小問1詳解】設(shè)第n分鐘后的水溫為,正比例系數(shù)為k,記,依題意,,當時,,則有,解得,因此,,即有,,所以2分鐘的水溫為℃,3分鐘后的水溫℃.小問2詳解】由(1)知,,時,,,則有,即,而,于是得是以為首項,為公比的等比數(shù)列,則有,即,所以是等比數(shù)列,的通項公式是,.【小問3詳解】由(2)及已知得:,即,整理得,兩邊取常用對數(shù)得:,而,解得,即,所以在水燒開后4到7分鐘飲用最佳.【點睛】思路點睛:涉及實際意義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省南京師范大學(xué)附屬中學(xué)2025屆高二生物第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 山東濟寧一中2025屆高三語文第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 認識長短小班課件
- 福建省龍巖市武平縣第二中學(xué)2025屆高二上生物期末統(tǒng)考模擬試題含解析
- 河北省衡水市武邑中學(xué)2025屆高三語文第一學(xué)期期末統(tǒng)考模擬試題含解析
- 2025屆黑龍江省黑河市通北一中高三語文第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析
- 上海市浦東新區(qū)市級名校2025屆生物高三上期末教學(xué)質(zhì)量檢測試題含解析
- 2025屆天津市河北區(qū)高二生物第一學(xué)期期末質(zhì)量檢測試題含解析
- 廣東省河源市2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析
- 2025屆廣東清遠市生物高二上期末監(jiān)測模擬試題含解析
- 水利工程勘察設(shè)計投標方案
- 附五:事業(yè)單位聘用人員聘用期滿考核暨續(xù)聘登記表
- 折翼的精靈:青少年自傷心理干預(yù)與預(yù)防
- 浙江省杭州市保俶塔教育集團2023-2024學(xué)年八年級上學(xué)期期中科學(xué)試卷
- 2023建設(shè)工程計價計量規(guī)范輔導(dǎo)
- 幼兒園爭做新時代好教師演講稿(16篇)
- 校企合作培養(yǎng)“雙師型”職教師資機制研究
- 小學(xué)語文(2023版)二年級上冊課后習(xí)題:月末綜合訓(xùn)練1(含答案)【可編輯可打印】
- DB61T1724-2023考古工地安全施工規(guī)范
- 小學(xué) 體育與健康 六年級 小足球 單元作業(yè)設(shè)計
- 某工程型鋼懸挑卸料平臺安全驗算
評論
0/150
提交評論