版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆陜西省安康市漢濱高中高二上數(shù)學(xué)期末監(jiān)測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足,那么點(diǎn)P到x軸的距離為()A. B.C. D.2.過(guò)點(diǎn)且與橢圓有相同焦點(diǎn)的雙曲線方程為()A B.C. D.3.拋物線的焦點(diǎn)為F,A,B是拋物線上兩點(diǎn),若,若AB的中點(diǎn)到準(zhǔn)線的距離為3,則AF的中點(diǎn)到準(zhǔn)線的距離為()A.1 B.2C.3 D.44.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.56.有下列三個(gè)命題:①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個(gè)數(shù)是A.0 B.1C.2 D.37.直線的一個(gè)法向量為()A. B.C. D.8.設(shè)、分別為具有公共焦點(diǎn)與的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為()A. B.C. D.9.“,”是“方程表示雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.圍棋起源于中國(guó),據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國(guó)安邦等相關(guān)聯(lián),蘊(yùn)含著中華文化的豐富內(nèi)涵.在某次國(guó)際圍棋比賽中,規(guī)定甲與乙對(duì)陣,丙與丁對(duì)陣,兩場(chǎng)比賽的勝者爭(zhēng)奪冠軍,根據(jù)以往戰(zhàn)績(jī),他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.3611.已知雙曲線的左右焦點(diǎn)分別為、,過(guò)點(diǎn)的直線交雙曲線右支于A、B兩點(diǎn),若是等腰三角形,且,則的周長(zhǎng)為()A. B.C. D.12.已知函數(shù)的圖象是下列四個(gè)圖象之一,且其導(dǎo)函數(shù)的圖象如圖所示,則該函數(shù)的圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓方程為橢圓內(nèi)有一點(diǎn),以這一點(diǎn)為中點(diǎn)的弦所在的直線方程為,則橢圓的離心率為_(kāi)_____14.已知為坐標(biāo)原點(diǎn),、分別是雙曲線的左、右頂點(diǎn),是雙曲線上不同于、的動(dòng)點(diǎn),直線、與軸分別交于點(diǎn)、兩點(diǎn),則________15.直線l過(guò)拋物線的焦點(diǎn)F,且l與該拋物線交于不同的兩點(diǎn),.若,則弦AB的長(zhǎng)是____16.已知隨機(jī)變量X服從正態(tài)分布,若,則______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的左頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn)分別為,且的面積為,橢圓上的動(dòng)點(diǎn)到的最小距離是(1)求橢圓的方程;(2)過(guò)橢圓的左頂點(diǎn)作兩條互相垂直的直線交橢圓于不同的兩點(diǎn)(異于點(diǎn)).①證明:動(dòng)直線恒過(guò)軸上一定點(diǎn);②設(shè)線段中點(diǎn)為,坐標(biāo)原點(diǎn)為,求的面積的最大值.18.(12分)在數(shù)列中,,點(diǎn)在直線上.(1)求的通項(xiàng)公式;(2)記的前項(xiàng)和為,且,求數(shù)列的前項(xiàng)和.19.(12分)已知圓:,,為圓上的動(dòng)點(diǎn),若線段的垂直平分線交于點(diǎn).(1)求動(dòng)點(diǎn)的軌跡的方程;(2)已知為上一點(diǎn),過(guò)作斜率互為相反數(shù)且不為0的兩條直線,分別交曲線于,,求的取值范圍.20.(12分)如圖,在平面直角標(biāo)系中,已知n個(gè)圓與x軸和線均相切,且任意相鄰的兩個(gè)圓外切,其中圓.(1)求數(shù)列通項(xiàng)公式;(2)記n個(gè)圓的面積之和為S,求證:.21.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值22.(10分)如圖,在三棱柱中,平面,,.(1)求證:平面;(2)點(diǎn)M在線段上,且,試問(wèn)在線段上是否存在一點(diǎn)N,滿足平面,若存在求的值,若不存在,請(qǐng)說(shuō)明理由?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè),由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進(jìn)而求得,最后利用等面積法,即可求解【詳解】設(shè),,為雙曲線的兩個(gè)焦點(diǎn),設(shè)焦距為,,點(diǎn)P在雙曲線上,,,,,,的面積為,利用等面積法,設(shè)的高為,則為點(diǎn)P到x軸的距離,則,故選:D【點(diǎn)睛】本題考查雙曲線的性質(zhì),難度不大.2、D【解析】設(shè)雙曲線的方程為,再代點(diǎn)解方程即得解.【詳解】解:由得,所以橢圓的焦點(diǎn)為.設(shè)雙曲線的方程為,因?yàn)殡p曲線過(guò)點(diǎn),所以.所以雙曲線的方程為.故選:D3、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點(diǎn)到準(zhǔn)線的距離【詳解】拋物線方程為,則,由于中點(diǎn)到準(zhǔn)線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點(diǎn)到準(zhǔn)線的距離為.故選:C4、B【解析】因但5、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡(jiǎn)后計(jì)算【詳解】設(shè)等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C6、B【解析】①寫(xiě)出命題的逆命題,可以進(jìn)行判斷為真命題;②原命題和逆否命題真假性相同,而通過(guò)舉例得到原命題為假,故逆否命題也為假;③寫(xiě)出命題的否命題,通過(guò)舉出反例得到否命題為假【詳解】①“若,則互為相反數(shù)”的逆命題是,若互為相反數(shù),則;是真命題;②“若,則”,當(dāng)a=-1,b=-2,時(shí)不滿足,故原命題為假命題,而原命題和逆否命題真假性相同,故得到命題為假;③“若,則”的否命題是若,則,舉例當(dāng)x=5時(shí),不滿足不等式,故得到否命題是假命題;故答案為B.【點(diǎn)睛】這個(gè)題目考查了命題真假的判斷,涉及命題的否定,命題的否命題,逆否命題,逆命題的相關(guān)概念,注意原命題和逆否命題的真假性相同,故需要判斷逆否命題的真假時(shí),只需要判斷原命題的真假7、B【解析】直線化為,求出直線的方向向量,因?yàn)榉ㄏ蛄颗c方向向量垂直,逐項(xiàng)驗(yàn)證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因?yàn)榉ㄏ蛄颗c方向向量垂直,設(shè)法向量為,所以,由于,A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤;故選:B.8、A【解析】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因?yàn)?,則,由勾股定理得,即,整理得,故.故選:A.9、A【解析】根據(jù)雙曲線的方程以及充分條件和必要條件的定義進(jìn)行判斷即可【詳解】由,可知方程表示焦點(diǎn)在軸上的雙曲線;反之,若表示雙曲線,則,即,或,所以“,”是“方程表示雙曲線”的充分不必要條件故選:A10、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結(jié)果.【詳解】甲最終獲得冠軍的概率,故選:B.11、A【解析】設(shè),.根據(jù)雙曲線的定義和等腰三角形可得,再利用余弦定理可求得,從而可得的周長(zhǎng).【詳解】由雙曲線可得設(shè),.則,,所以,因?yàn)槭堑妊切危?,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周長(zhǎng)故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)雙曲線的定義求解是解題關(guān)鍵.12、A【解析】利用導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系及導(dǎo)數(shù)的幾何意義即得.【詳解】由函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖像自左至右是先減后增,可知函數(shù)y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯(cuò)誤,A正確.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),利用“點(diǎn)差法”得到,即可求出離心率.【詳解】設(shè)直線與橢圓交于,則.因?yàn)锳B中點(diǎn),則.又,相減得:.所以所以所以,所以,即離心率.故答案為:.14、3【解析】求得坐標(biāo),設(shè)出點(diǎn)坐標(biāo),求得直線的方程,由此求得兩點(diǎn)的縱坐標(biāo),進(jìn)而求得.【詳解】依題意,設(shè),則,直線的方程為,則,直線的方程為,則,所以.故答案為:15、4【解析】由題意得,再結(jié)合拋物線的定義即可求解.【詳解】由題意得,由拋物線的定義知:,故答案為:4.16、##25【解析】根據(jù)正態(tài)分布曲線的對(duì)稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)①證明見(jiàn)解析;②【解析】(1)根據(jù)題意得,,解方程即可;(2)①設(shè)直線:,直線:,聯(lián)立曲線分別求出點(diǎn)和的坐標(biāo),求直線方程判斷定點(diǎn)即可;②根據(jù)題意得,代入求最值即可.【小問(wèn)1詳解】根據(jù)題意得,,,又,三個(gè)式子聯(lián)立解得,,,所以橢圓的方程為:【小問(wèn)2詳解】①證明:設(shè)兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因?yàn)椋栽O(shè)直線:,直線:;由,解得,所以,同理,.當(dāng)時(shí),,所以直線的方程為:,整理得,此時(shí)直線過(guò)定點(diǎn);當(dāng)時(shí),直線的方程為:,此時(shí)直線過(guò)定點(diǎn),故直線恒過(guò)定點(diǎn).②根據(jù)題意得,,,,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的面積的最大值為:.【點(diǎn)睛】解決直線與橢圓綜合問(wèn)題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長(zhǎng)、斜率、三角形的面積等問(wèn)題18、(1)(2)【解析】(1)由定義證明數(shù)列是等差數(shù)列,再由得出通項(xiàng)公式;(2)先由求和公式得出,再由裂項(xiàng)相消求和法求和即可.【小問(wèn)1詳解】由題意可知,,所以數(shù)列是公差的等差數(shù)列又,所以,故小問(wèn)2詳解】,則故19、(1)動(dòng)點(diǎn)的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線段的垂直平分線交于點(diǎn)可得,由此可得,根據(jù)橢圓的定義可得點(diǎn)的軌跡為橢圓,結(jié)合橢圓的標(biāo)準(zhǔn)方程求動(dòng)點(diǎn)的軌跡的方程;(2)由(1)可求點(diǎn)坐標(biāo),設(shè)直線的方程為,,聯(lián)立方程組化簡(jiǎn)可得,,由直線,的斜率互為相反數(shù)可得的值,再由弦長(zhǎng)公式求的長(zhǎng),再求其范圍.【小問(wèn)1詳解】由題知故.即即在以為焦點(diǎn)且長(zhǎng)軸為4的橢圓上則動(dòng)點(diǎn)的軌跡的方程為:;【小問(wèn)2詳解】故即.設(shè):,聯(lián)立(*),,∴,,又則:即若,則過(guò),不符合題意故,∴,故20、(1).(2)證明見(jiàn)解析.【解析】(1)由已知得,設(shè)圓分別切軸于點(diǎn),過(guò)點(diǎn)作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計(jì)算可得證.【小問(wèn)1詳解】解:直線的傾斜角為則圓心在直線上,,設(shè)圓分別切軸于點(diǎn),過(guò)點(diǎn)作,垂足為.在中,所以即化簡(jiǎn)得,變形得,所以是以為首項(xiàng),為公比的等比數(shù)列.,.【小問(wèn)2詳解】解:由(1)得所以,所以.21、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標(biāo)系,利用向量法求線面角.【小問(wèn)1詳解】因?yàn)镼為AD的中點(diǎn),,所以,又因?yàn)槠矫娴酌鍭BCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問(wèn)2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標(biāo)系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點(diǎn)可知,,設(shè)平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個(gè)法向量為,所以,所以直線PB與平面MQB
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 財(cái)務(wù)部年度預(yù)算執(zhí)行總結(jié)與下年度計(jì)劃
- 稅收法規(guī)工作總結(jié)
- 建材行業(yè)質(zhì)量管理培訓(xùn)反思
- 營(yíng)銷(xiāo)策劃公司前臺(tái)業(yè)務(wù)總結(jié)
- 【八年級(jí)下冊(cè)歷史】單元測(cè)試 第一、二單元綜合測(cè)試卷
- 金融行業(yè)客服工作總結(jié)
- 2024年秋葉的舞會(huì)大班教案
- 《性心理的調(diào)節(jié)方法》課件
- 2024年觀察綠豆日記300字
- 農(nóng)民甲乙承包合同(2篇)
- JJF(新) 106-2023 微波消解儀溫度、壓力參數(shù)校準(zhǔn)規(guī)范
- 《廚政管理說(shuō)課》課件
- 安徽省合肥市包河區(qū)四十八中學(xué)2023-2024學(xué)年數(shù)學(xué)七年級(jí)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析
- 春節(jié)家族祭祀活動(dòng)策劃方案
- 美術(shù)概論-課件
- 保潔供方管控要點(diǎn)
- 空氣源熱泵冷暖空調(diào)、熱水項(xiàng)目施工方案
- 《行政組織學(xué)》期末復(fù)習(xí)指導(dǎo)
- 廣東省佛山市2022-2023學(xué)年高一上學(xué)期期末考試英語(yǔ)試題(含答案)
- 五年級(jí)上冊(cè)道德與法治全冊(cè)知識(shí)點(diǎn)匯總
- 小學(xué)英語(yǔ)“大單元教學(xué)”整體設(shè)計(jì)與案例分析講稿
評(píng)論
0/150
提交評(píng)論