版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河南省信陽市息縣息縣一中高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù)(),,則方程在區(qū)間上的解的個數(shù)是A. B.C. D.2.若不等式對一切恒成立,那么實數(shù)的取值范圍是A. B.C. D.3.下列函數(shù)中為奇函數(shù)的是()A. B.C. D.4.若函數(shù)在區(qū)間上存在零點,則實數(shù)的取值范圍是A. B.C. D.5.在正方體中,分別是的中點,則直線與平面所成角的余弦值為A. B.C. D.6.設(shè)全集,集合,,則=()A. B.C. D.7.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.棱長分別為1、、2的長方體的8個頂點都在球的表面上,則球的體積為A. B.C. D.9.已知函數(shù)的圖像如圖所示,則函數(shù)與在同一坐標(biāo)系中的圖像是()A. B.C. D.10.若是圓的弦,的中點是(-1,2),則直線的方程是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)f(x)為奇函數(shù),且x>0時,f(x)=+1,則當(dāng)x<0時,f(x)=________.12.已知,則_______.13.兩條平行直線與的距離是__________14.已知函數(shù)滿足下列四個條件中的三個:①函數(shù)是奇函數(shù);②函數(shù)在區(qū)間上單調(diào)遞增;③;④在y軸右側(cè)函數(shù)的圖象位于直線上方,寫出一個符合要求的函數(shù)________________________.15.若、是方程的兩個根,則__________.16.如圖,矩形中,,,與交于點,過點作,垂足為,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,正方形ABCD所在平面與半圓孤所在平面垂直,M是上異于C,D的點(1)證明:平面AMD⊥平面BMC;(2)若正方形ABCD邊長為1,求四棱錐M﹣ABCD體積的最大值18.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱“局部中心函數(shù)”.(1)已知二次函數(shù)(),試判斷是否為“局部中心函數(shù)”,并說明理由;(2)若是定義域為上的“局部中心函數(shù)”,求實數(shù)的取值范圍.19.已知是定義在上的奇函數(shù),,當(dāng)時的解析式為.(1)寫出在上的解析式;(2)求在上的最值.20.已知函數(shù),其中m為實數(shù)(1)求f(x)的定義域;(2)當(dāng)時,求f(x)的值域;(3)求f(x)的最小值21.設(shè)函數(shù)(1)設(shè),求函數(shù)的最大值和最小值;(2)設(shè)函數(shù)為偶函數(shù),求的值,并求函數(shù)的單調(diào)增區(qū)間
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意得,方程在區(qū)間上的解的個數(shù)即函數(shù)與函數(shù)的圖像在區(qū)間上的交點個數(shù)在同一坐標(biāo)系內(nèi)畫出兩個函數(shù)圖像,注意當(dāng)時,恒成立,易得交點個數(shù)為.選A點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標(biāo)有幾個不同的值,就有幾個不同的零點.但在應(yīng)用圖象解題時要注意兩個函數(shù)圖象在同一坐標(biāo)系內(nèi)的相對位置,要做到觀察仔細(xì),避免出錯2、D【解析】由絕對值不等式解法,分類討論去絕對值,再根據(jù)恒成立問題的解法即可求得a的取值范圍【詳解】根據(jù)絕對不等式,分類討論去絕對值,得所以所以所以選D【點睛】本題考查了絕對值不等式化簡方法,恒成立問題的基本應(yīng)用,屬于基礎(chǔ)題3、D【解析】利用奇函數(shù)的定義逐個分析判斷【詳解】對于A,定義域為,因為,所以是偶函數(shù),所以A錯誤,對于B,定義域為,因為,且,所以是非奇非偶函數(shù),所以B錯誤,對于C,定義域為,因為定義域不關(guān)于原點對稱,所以是非奇非偶函數(shù),所以C錯誤,對于D,定義域為,因為,所以是奇函數(shù),所以D正確,故選:D4、C【解析】由函數(shù)的零點的判定定理可得f(﹣1)f(1)<0,解不等式求得實數(shù)a的取值范圍【詳解】由題,函數(shù)f(x)=ax+1單調(diào),又在區(qū)間(﹣1,1)上存在一個零點,則f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故選C【點睛】本題主要考查函數(shù)的零點的判定定理的應(yīng)用,屬于基礎(chǔ)題5、C【解析】設(shè)正方體的棱長為,如圖,連接,它們交于,連接,則平面,而,故就是直線與平面所成的余角,又為直角三角形且,所以,,設(shè)直線與平面所成的角為,則,選C.點睛:線面角的計算往往需要先構(gòu)造面的垂線,必要時還需將已知的面的垂線適當(dāng)平移才能構(gòu)造線面角,最后把該角放置在容易計算的三角形中計算其大小.6、B【解析】根據(jù)題意和補集的運算可得,利用交集的概念和運算即可得出結(jié)果.【詳解】由題意知,所以.故選:B7、A【解析】首先求解二次不等式,然后結(jié)合不等式的解集即可確定充分性和必要性是否成立即可.【詳解】求解二次不等式可得:或,據(jù)此可知:是的充分不必要條件.故選:A.【點睛】本題主要考查二次不等式的解法,充分性和必要性的判定,屬于基礎(chǔ)題.8、A【解析】球的直徑為長方體的體對角線,又體對角線的長度為,故體積為,選A.9、B【解析】由函數(shù)的圖象可得,函數(shù)的圖象過點,分別代入函數(shù)式,,解得,函數(shù)與都是增函數(shù),只有選項符合題意,故選B.【方法點晴】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意的選項一一排除.10、B【解析】由題意知,直線PQ過點A(-1,2),且和直線OA垂直,故其方程為:y﹣2=(x+1),整理得x-2y+5=0故答案為B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】當(dāng)x<0時,-x>0,∴f(-x)=+1,又f(-x)=-f(x),∴f(x)=,故填.12、【解析】直接利用二倍角的余弦公式求得cos2a的值【詳解】∵.故答案為:13、【解析】直線與平行,,得,直線,化為,兩平行線距離為,故答案為.14、【解析】滿足①②④的一個函數(shù)為,根據(jù)奇偶性以及單調(diào)性,結(jié)合反比例函數(shù)的性質(zhì)證明①②④.【詳解】滿足①②④對于①,函數(shù)的定義域為關(guān)于原點對稱,且,即為奇函數(shù);對于②,任取,且因為,所以,即函數(shù)在區(qū)間上單調(diào)遞增;對于④,令,當(dāng)時,,即在y軸右側(cè)函數(shù)的圖象位于直線上方故答案為:【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵在于利用定義證明奇偶性以及單調(diào)性.15、【解析】由一元二次方程根與系數(shù)的關(guān)系可得,,再由
,運算求得結(jié)果【詳解】、是方程的兩個根,,,,,故答案為:16、【解析】先求得,然后利用向量運算求得【詳解】,,所以,.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)先證明BC⊥平面CMD,推出DM⊥BC,然后證明DM⊥平面BMC,由線面垂直推出面面垂直;(2)當(dāng)M位于半圓弧CD的中點處時,四棱錐M﹣ABCD的高最大,體積也最大,相應(yīng)數(shù)值代入棱錐的體積公式即可得解.【詳解】(1)證明:由題設(shè)知,平面CMD⊥平面ABCD,交線為CD,∵BC⊥CD,BC在平面ABCD內(nèi),∴BC⊥平面CMD,故DM⊥BC,又DM⊥CM,BC∩CM=C,∴DM⊥平面BMC,又DM在平面AMD內(nèi),∴平面AMD⊥平面BMC;(2)依題意,當(dāng)M位于半圓弧CD的中點處時,四棱錐M﹣ABCD的高最大,體積也最大,因為正方形邊長為1,所以半圓的半徑為,此時四棱錐M﹣ABCD的體積為,故四棱錐M﹣ABCD體積的最大值為【點睛】本題考查面面垂直的證明,需轉(zhuǎn)化為證明線面垂直,考查棱錐的體積計算,屬于中檔題.18、(1)為“局部中心函數(shù)”,理由詳見解題過程;(2)【解析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域為上的“局部中心函數(shù)”可轉(zhuǎn)化為方程有解,再利用整體思路得出結(jié)果.【詳解】解:(1)由題意,(),所以,,當(dāng)時,解得:,由于,所以,所以為“局部中心函數(shù)”.(2)因為是定義域為上的“局部中心函數(shù)”,所以方程有解,即在上有解,整理得:,令,,故題意轉(zhuǎn)化為在上有解,設(shè)函數(shù),當(dāng)時,在上有解,即,解得:;當(dāng)時,則需要滿足才能使在上有解,解得:,綜上:.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì)、指數(shù)函數(shù)的圖象與性質(zhì),考查了整體換元的思想方法,還考查了學(xué)生理解新定義的能力.19、(1)(2)最大值為0,最小值為【解析】(1)先求得參數(shù),再依據(jù)奇函數(shù)性質(zhì)即可求得在上的解析式;(2)轉(zhuǎn)化為二次函數(shù)在給定區(qū)間求值域即可解決.【小問1詳解】因為是定義在上的奇函數(shù),所以,即,由,得,由,解得,則當(dāng)時,函數(shù)解析式為設(shè),則,,即當(dāng)時,【小問2詳解】當(dāng)時,,所以當(dāng),即時,的最大值為0,當(dāng),即時,的最小值為.20、(1)(2)[2,2](3)當(dāng)時,f(x)的最小值為2;當(dāng)時,f(x)的最小值為【解析】(1)根據(jù)函數(shù)解析式列出相應(yīng)的不等式組,即可求得函數(shù)定義域;(2)令,采用兩邊平方的方法,即可求得答案;(3)仿(2),令,可得,從而將變?yōu)殛P(guān)于t的二次函數(shù),然后根據(jù)在給定區(qū)間上的二次函數(shù)的最值問題求解方法,分類討論求得答案.【小問1詳解】由解得所以f(x)的定義域為【小問2詳解】當(dāng)時,設(shè),則當(dāng)時,取得最大值8;當(dāng)或時,取得最小值4所以的取值范圍是[4,8]所以f(x)的值城為[2,2]【小問3詳解】設(shè),由(2)知,,且,則令,,若,,此時的最小值為;若,當(dāng)時,在[2,2上單調(diào)遞增,此時的最小值為;當(dāng),即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 訴訟案件處理經(jīng)驗總結(jié)
- 房地產(chǎn)開發(fā)業(yè)會計工作總結(jié)
- 網(wǎng)上購物系統(tǒng)課程設(shè)計jsp
- 茶葉店銷售員工作總結(jié)
- 工業(yè)行業(yè)保安工作總結(jié)
- 電子商務(wù)行業(yè)行政后勤工作總結(jié)
- 電影影視銷售心得體會
- 玻璃制品生產(chǎn)招標(biāo)合同三篇
- 勸退員工合同(2篇)
- 創(chuàng)新項目保密協(xié)議書(2篇)
- 2024養(yǎng)老院消防設(shè)備升級與消防系統(tǒng)維護服務(wù)合同3篇
- 單位內(nèi)部治安保衛(wèi)制度
- 人才引進政策購房合同模板
- 學(xué)生宿舍消防安全制度模版(3篇)
- GB/T 44990-2024激光熔覆修復(fù)層界面結(jié)合強度試驗方法
- 四川省成都市2023-2024學(xué)年高二上學(xué)期期末調(diào)研考試語文試題(解析版)
- ps經(jīng)典課程-海報設(shè)計(第六講)
- 江蘇省泰州市2023-2024學(xué)年高一上學(xué)期期末語文試題及答案
- 【MOOC】工程制圖解讀-西安交通大學(xué) 中國大學(xué)慕課MOOC答案
- 期末復(fù)習(xí)(試題)-2024-2025學(xué)年三年級上冊數(shù)學(xué)蘇教版
- 浙江省杭州市西湖區(qū)2023-2024學(xué)年九年級上學(xué)期期末語文試題(解析版)
評論
0/150
提交評論