版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江西省宜春市宜春中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.橢圓的焦點(diǎn)坐標(biāo)為()A. B.C. D.2.已知向量,且,則的值為()A.4 B.2C.3 D.13.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.4.如圖,平行六面體中,與的交點(diǎn)為,設(shè),則選項(xiàng)中與向量相等的是()A. B.C. D.5.甲、乙、丙、丁、戊共5名同學(xué)進(jìn)行勞動(dòng)技術(shù)比賽,決出第1名到第5名的名次.甲和乙去詢問成績(jī),回答者對(duì)甲說(shuō):“很遺憾,你和乙都沒有得到冠軍.”對(duì)乙說(shuō):“你當(dāng)然不會(huì)是最差的.”從這兩個(gè)回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.1206.已知函數(shù),,若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.7.已知雙曲線左右焦點(diǎn)為,過(guò)的直線與雙曲線的右支交于,兩點(diǎn),且,若線段的中垂線過(guò)點(diǎn),則雙曲線的離心率為()A.3 B.2C. D.8.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.9.函數(shù)在點(diǎn)處的切線方程的斜率是()A. B.C. D.10.在四棱錐中,底面ABCD是正方形,E為PD中點(diǎn),若,,,則()A. B.C. D.11.焦點(diǎn)在軸的正半軸上,且焦點(diǎn)到準(zhǔn)線的距離為的拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.12.若圓與圓相切,則的值為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.曲線圍成的圖形的面積是__________14.已知實(shí)數(shù),滿足,則的最大值為______.15.直線過(guò)拋物線的焦點(diǎn)F,且與C交于A,B兩點(diǎn),則___________.16.已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),以為圓心的圓經(jīng)過(guò)原點(diǎn),且與拋物線的準(zhǔn)線相切,切點(diǎn)為,線段交拋物線于點(diǎn),則___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:(1)[79.5,89.5)這一組的頻數(shù)、頻率分別是多少?(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的眾數(shù)、中位數(shù)、平均數(shù)是多少?18.(12分)如圖,在直三棱柱中,,,,為的中點(diǎn),點(diǎn),分別在棱,上,,.(1)求點(diǎn)到直線的距離(2)求平面與平面夾角的余弦值.19.(12分)已知拋物線過(guò)點(diǎn),是拋物線的焦點(diǎn),直線交拋物線于另一點(diǎn),為坐標(biāo)原點(diǎn).(1)求拋物線的方程和焦點(diǎn)的坐標(biāo);(2)拋物線的準(zhǔn)線上是否存在點(diǎn)使,若存在請(qǐng)求出點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.20.(12分)已知在△中,角A,B,C的對(duì)邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△的面積S的最大值.21.(12分)已知O為坐標(biāo)原點(diǎn),雙曲線C:(,)的離心率為,點(diǎn)P在雙曲線C上,點(diǎn),分別為雙曲線C的左右焦點(diǎn),.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)已知點(diǎn),,設(shè)直線PA,PB的斜率分別為,.證明:為定值.22.(10分)如圖,在四棱錐中,平面,,且,,,,,為的中點(diǎn)(1)求證:平面;(2)在線段上是否存在一點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)方程可得,且焦點(diǎn)軸上,然后可得答案.【詳解】由橢圓的方程可得,且焦點(diǎn)在軸上,所以,即,故焦點(diǎn)坐標(biāo)為故選:B2、A【解析】由題意可得,利用空間向量數(shù)量積的坐標(biāo)表示列方程,解方程即可求解.【詳解】因?yàn)?,所以,因?yàn)橄蛄?,,所以,解得,所以的值為,故選:A.3、A【解析】根據(jù)不等式性質(zhì)及對(duì)數(shù)函數(shù)的單調(diào)性判斷命題的真假,根據(jù)大角對(duì)大邊及正弦定理可判斷命題的真假,再根據(jù)復(fù)合命題真假的判斷方法即可得出結(jié)論.【詳解】解:若,且,則,當(dāng)時(shí),,所以,當(dāng)時(shí),,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.4、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結(jié)合幾何體有,進(jìn)而可知與向量相等的表達(dá)式.【詳解】連接,如下圖示:,.故選:B5、A【解析】根據(jù)題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個(gè)名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個(gè)名次,由加法原理計(jì)算可得答案【詳解】根據(jù)題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個(gè)名次,有種情況,此時(shí)有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個(gè)名次,有種情況,此時(shí)有種名次排列情況;則一共有種不同的名次情況,故選:A6、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實(shí)數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時(shí)要注意全稱量詞與存在量詞對(duì)題意的影響.等價(jià)轉(zhuǎn)化如下:(1),,使得成立等價(jià)于(2),,不等式恒成立等價(jià)于(3),,使得成立等價(jià)于(4),,使得成立等價(jià)于7、C【解析】由雙曲線的定義得出中各線段長(zhǎng)(用表示),然后通過(guò)余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C8、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點(diǎn)睛】(1)本題主要考查向量的線性運(yùn)算和空間向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2).9、D【解析】求解導(dǎo)函數(shù),再由導(dǎo)數(shù)的幾何意義得切線的斜率.【詳解】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D10、C【解析】根據(jù)向量線性運(yùn)算法則計(jì)算即可.【詳解】故選:C11、A【解析】直接由焦點(diǎn)位置及焦點(diǎn)到準(zhǔn)線的距離寫出標(biāo)準(zhǔn)方程即可.【詳解】由焦點(diǎn)在軸的正半軸上知拋物線開口向上,又焦點(diǎn)到準(zhǔn)線的距離為,故拋物線的標(biāo)準(zhǔn)方程是.故選:A.12、C【解析】分類討論:當(dāng)兩圓外切時(shí),圓心距等于半徑之和;當(dāng)兩圓內(nèi)切時(shí),圓心距等于半徑之差,即可求解.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當(dāng)兩圓外切時(shí),有,此時(shí).②當(dāng)兩圓內(nèi)切時(shí),有,此時(shí).綜上,當(dāng)時(shí)兩圓外切;當(dāng)時(shí)兩圓內(nèi)切.故選:C【點(diǎn)睛】本題考查了圓與圓的位置關(guān)系,解答兩圓相切問題時(shí)易忽略兩圓相切包括內(nèi)切和外切兩種情況.解答時(shí)注意分類討論,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng),時(shí),已知方程是,即.它對(duì)應(yīng)的曲線是第一象限內(nèi)半圓?。òǘ它c(diǎn)),它的圓心為,半徑為.同理,當(dāng),;,;,時(shí)對(duì)應(yīng)的曲線都是半圓?。ㄈ鐖D).它所圍成的面積是.故答案為14、【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過(guò)點(diǎn)時(shí),直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點(diǎn),則取得最大值為.故答案為:【點(diǎn)睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準(zhǔn)確無(wú)誤作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)直線時(shí),要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標(biāo)函數(shù)的最值會(huì)在可行域的端點(diǎn)或邊界上取得.15、8【解析】由題意,求出,然后聯(lián)立直線與拋物線方程,由韋達(dá)定理及即可求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,又直線過(guò)拋物線的焦點(diǎn)F,所以,拋物線的方程為,由,得,所以,所以.故答案為:8.16、【解析】分析可知為等腰三角形,可得出,將點(diǎn)的坐標(biāo)代入拋物線的方程,可求得的值,可得出拋物線的方程以及點(diǎn)的坐標(biāo),求出點(diǎn)的坐標(biāo),設(shè)點(diǎn),其中,分析可知,利用平面向量共線的坐標(biāo)表示求出的值,進(jìn)而可求得結(jié)果.【詳解】由拋物線的定義結(jié)合已知條件可知,則為等腰三角形,易知拋物線的焦點(diǎn)為,故,即點(diǎn),因?yàn)辄c(diǎn)在拋物線上,則,解得,所以,拋物線的方程為,故點(diǎn)、,因?yàn)橐渣c(diǎn)為圓心,為半徑的圓與直線相切于點(diǎn),則,設(shè)點(diǎn),其中,,,由題意可知,則,整理可得,解得,因此,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)0.25,15;(2)眾數(shù)為74.5,中位數(shù)為72.8,平均分為70.5.【解析】(1)直接利用頻率和頻數(shù)公式求解;(2)利用頻率分布直方圖的公式求眾數(shù)、中位數(shù)、平均數(shù).【詳解】(1)頻率=(89.5-79.5)×0.025=0.25;頻數(shù)=60×0.25=15.(2)[69.5,79.5)一組的頻率最大,人數(shù)最多,則眾數(shù)為74.5,左邊三個(gè)矩形的面積和為0.4,左邊四個(gè)矩形的面積和為0.7,所以中位數(shù)在第4個(gè)矩形中,設(shè)中位數(shù)為,所以中位數(shù)為72.8.平均分為44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.518、(1);(2).【解析】(1)由直棱柱的性質(zhì)及勾股定理求出△各邊長(zhǎng),應(yīng)用余弦定理求,進(jìn)而可得其正弦值,再求邊上的高即可.(2)以為原點(diǎn),,,所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系,然后求出兩個(gè)平面的法向量,然后可算出答案.【小問1詳解】如圖,連接,由題設(shè),,,,由直棱柱性質(zhì)及,在中,在中,在中,在中,所以在△中,,則,所以到直線的距離.【小問2詳解】以為原點(diǎn),,,所在直線為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系易知:,,,則,因?yàn)槠矫?,所以平面的一個(gè)法向量為設(shè)平面的法向量為,則,取,則,所以,即平面與平面的夾角的余弦值為19、(1)拋物線的方程為,焦點(diǎn)坐標(biāo)為(2)存在,且【解析】(1)根據(jù)點(diǎn)坐標(biāo)求得,進(jìn)而求得拋物線的方程和焦點(diǎn)的坐標(biāo).(2)設(shè),根據(jù)列方程,化簡(jiǎn)求得的坐標(biāo).【小問1詳解】將代入得,所以拋物線的方程為,焦點(diǎn)坐標(biāo)為.【小問2詳解】存在,理由如下:直線的方程為,或,即.拋物線的準(zhǔn)線,設(shè),,即,所以.即存在點(diǎn)使.20、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內(nèi)角的性質(zhì)可得,進(jìn)而可得C的大??;(2)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號(hào)成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴△的面積S的最大值為.21、(1)(2)證明見解析【解析】(1)根據(jù)題意和雙曲線的定義求出,結(jié)合離心率求出b,即可得出雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè),根據(jù)兩點(diǎn)的坐標(biāo)即可求出、,化簡(jiǎn)計(jì)算即可.【小問1詳解】由題知:由雙曲線的定義知:,又因?yàn)?,所以,所以所以,雙曲線C的標(biāo)準(zhǔn)方程為小問2詳解】設(shè),則因?yàn)?,,所以,所?2、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建師范大學(xué)《社會(huì)學(xué)概論》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《環(huán)境生態(tài)工程》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《地理語(yǔ)言學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 第14章 因子分析1統(tǒng)計(jì)學(xué)原理課件
- 中國(guó)高血壓防治指南關(guān)于高血壓急癥的解讀
- 深度報(bào)文檢測(cè)技術(shù)Comware V7 DPI
- 油田動(dòng)土作業(yè)安全管理實(shí)施細(xì)則
- 教研活動(dòng)記錄(班級(jí)環(huán)創(chuàng)及擺布)
- 2024年太原客運(yùn)駕駛員考試試題答案解析
- 2024年防城港A1客運(yùn)從業(yè)資格證
- 電動(dòng)車充電樁設(shè)備施工方案
- 綜合病房工程裝飾裝修工程監(jiān)理細(xì)則
- 角膜穿通傷護(hù)理查房
- 2023年國(guó)家電力投資集團(tuán)公司招聘筆試題庫(kù)及答案解析
- 橈骨遠(yuǎn)端骨折中醫(yī)治療培訓(xùn)課件
- 提高護(hù)士對(duì)病人預(yù)見性管理及早期風(fēng)險(xiǎn)識(shí)別課件
- 西班牙語(yǔ)入門-字母與單詞發(fā)音課件
- 刑事申訴狀成功范文(通用十三篇)
- 建筑工程類專業(yè)答辯可能的問題匯總
- 小學(xué)四年級(jí)地方課程安全教育教案泰山出版社
- 買賣合同法律風(fēng)險(xiǎn)防范講座課件
評(píng)論
0/150
提交評(píng)論