版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河北省保定市曲陽縣一中數(shù)學(xué)高二上期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列{an}中,a1=1,,則a7=()A.13 B.14C.15 D.162.若橢圓的弦恰好被點平分,則所在的直線方程為()A. B.C. D.3.數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點,,若其歐拉線的方程為,則頂點的坐標為()A. B.C. D.4.在二面角的棱上有兩個點、,線段、分別在這個二面角的兩個面內(nèi),并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.5.已知雙曲線的焦距為,且雙曲線的一條漸近線與直線平行,則雙曲線的方程為()A. B.C. D.6.等比數(shù)列的第4項與第6項分別為12和48,則公比的值為()A. B.2C.或2 D.或7.下面三種說法中,正確說法的個數(shù)為()①如果兩個平面有三個公共點,那么這兩個平面重合;②兩條直線可以確定一個平面;③若,,,則A.1 B.2C.3 D.08.概率論起源于賭博問題.法國著名數(shù)學(xué)家布萊爾帕斯卡遇到兩個賭徒向他提出的賭金分配問題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當甲贏了局,乙贏了局,不再賭下去時,賭金如何分配?假設(shè)每局兩人輸贏的概率各占一半,每局輸贏相互獨立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎9.現(xiàn)有甲、乙、丙、丁、戊五位同學(xué),分別帶著A、B、C、D、E五個不同的禮物參加“抽盲盒”學(xué)游戲,先將五個禮物分別放入五個相同的盒子里,每位同學(xué)再分別隨機抽取一個盒子,恰有一位同學(xué)拿到自己禮物的概率為()A. B.C. D.10.命題“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得11.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.12.直線在y軸上的截距是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線:的焦點,為拋物線上在第一象限的點.若為的中點,為拋物線的頂點,則直線斜率的最大值為______.14.設(shè)橢圓標準方程為,則該橢圓的離心率為______15.設(shè),分別是橢圓C:的左、右焦點,點M為橢圓C上一點且在第一象限,若為等腰三角形,則M的坐標為___________16.已知向量與是平面的兩個法向量,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)在上有1個零點,求實數(shù)a的取值范圍18.(12分)如圖,在正三棱柱中,,,,分別為,,的中點(1)證明:(2)求平面與平面所成銳二面角的余弦值19.(12分)設(shè)數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)記,數(shù)列的前項和為,求不等式的解集.20.(12分)《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬中,側(cè)棱底面,且,過棱的中點,作交于點,連接(1)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;(2)記陽馬的體積為,四面體的體積為,求的值;(3)若面與面所成二面角的大小為,求的值21.(12分)已知動點M到定點和的距離之和為4(1)求動點軌跡的方程;(2)若直線交橢圓于兩個不同的點A,B,O是坐標原點,求的面積22.(10分)已知拋物線:,直線過定點.(1)若與僅有一個公共點,求直線的方程;(2)若與交于A,B兩點,直線OA,OB(其中О為坐標原點)的斜率分別為,,試探究在,,,中,運算結(jié)果是否有為定值的?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用等差數(shù)列的基本量,即可求解.【詳解】設(shè)等差數(shù)列的公差為,,解得:,則.故選:A2、D【解析】判斷點M與橢圓的位置關(guān)系,再借助點差法求出直線AB的斜率即可計算作答.【詳解】顯然點橢圓內(nèi),設(shè)點,依題意,,兩式相減得:,而弦恰好被點平分,即,則直線AB的斜率,直線AB:,即,所以所在的直線方程為.故選:D3、A【解析】設(shè),計算出重心坐標后代入歐拉方程,再求出外心坐標,根據(jù)外心的性質(zhì)列出關(guān)于的方程,最后聯(lián)立解方程即可.【詳解】設(shè),由重心坐標公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當,時,重合,舍去頂點的坐標是故選:A【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.4、C【解析】設(shè)這個二面角的度數(shù)為,由題意得,從而得到,由此能求出結(jié)果.【詳解】設(shè)這個二面角的度數(shù)為,由題意得,,,解得,∴,∴這個二面角的度數(shù)為,故選:C.【點睛】本題考查利用向量的幾何運算以及數(shù)量積研究面面角.5、B【解析】根據(jù)焦點在x軸上的雙曲線漸近線斜率為±可求a,b關(guān)系,再結(jié)合a,b,c關(guān)系即可求解﹒【詳解】∵雙曲線1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴雙曲線的方程為故選:B6、C【解析】根據(jù)等比數(shù)列的通項公式計算可得;詳解】解:依題意、,所以,即,所以;故選:C7、A【解析】對于①,有兩種情況,對于②考慮異面直線,對于③根據(jù)線面公理可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故①不正確;兩條異面直線不能確定一個平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個說法是正確的.故選:A8、A【解析】利用獨立事件計算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.9、D【解析】利用排列組合知識求出每位同學(xué)再分別隨機抽取一個盒子,恰有一位同學(xué)拿到自己禮物的情況個數(shù),以及五人抽取五個禮物的總情況,兩者相除即可.【詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來的四人分為兩種情況,一種是兩兩一對,兩個人都拿到對方的禮物,有種情況,另一種是四個人都拿到另外一個人的禮物,不是兩兩一對,都拿到對方的情況,由種情況,綜上:共有種情況,而五人抽五個禮物總數(shù)為種情況,故恰有一位同學(xué)拿到自己禮物的概率為.故選:D10、D【解析】的否定是,的否定是,的否定是.故選D【考點】全稱命題與特稱命題的否定【方法點睛】全稱命題的否定是特稱命題,特稱命題的否定是全稱命題.對含有存在(全稱)量詞的命題進行否定需要兩步操作:①將存在(全稱)量詞改成全稱(存在)量詞;②將結(jié)論加以否定11、D【解析】由題設(shè)易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關(guān)鍵點點睛:由橢圓的對稱性及矩形性質(zhì)可得,由已知條件得到,進而得到橢圓參數(shù)的齊次式求離心率范圍.12、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由題意,可得,設(shè),,,根據(jù)是線段的中點,求出的坐標,可得直線的斜率,利用基本不等式即可得結(jié)論【詳解】解:由題意,可得,設(shè),,,,是線段的中點,則,,,當且僅當時取等號,直線的斜率的最大值為1故答案為:114、##【解析】求出、的值,即可求得橢圓的離心率.【詳解】在橢圓中,,,則,因此,該橢圓的離心率為.故答案為:.15、【解析】先計算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標為,代入橢圓C:求出.【詳解】橢圓C:,所以.因為M在橢圓上,.因為M在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標為.因為M為橢圓C:上一點且在第一象限,所以,解得:所以M的坐標為.故答案為:16、【解析】由且為非零向量可直接構(gòu)造方程求得,進而得到結(jié)果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2).【解析】(1)對函數(shù)求導(dǎo),按a值的正負分析討論導(dǎo)數(shù)值的符號計算作答.(2)求出函數(shù)的解析式并求導(dǎo),再按在值的正負分段討論推理作答.【小問1詳解】函數(shù)的定義域為R,求導(dǎo)得:當時,當時,,當時,,則在上單調(diào)遞減,在上單調(diào)遞增,當時,令,得,若,即時,,則有在R上單調(diào)遞增,若,即時,當或時,,當時,,則有在,上都單調(diào)遞增,在上單調(diào)遞減,若,即時,當或時,,當時,,則有在,上都單調(diào)遞增,在上單調(diào)遞減,所以,當時,上單調(diào)遞減,在上單調(diào)遞增,當時,在,上都單調(diào)遞增,在上單調(diào)遞減,當時,在R上單調(diào)遞增,當時,在,上都單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】依題意,,,當時,,當時,,,則函數(shù)在上單調(diào)遞增,有,無零點,當時,,,函數(shù)在上單調(diào)遞減,,無零點,當時,,使得,而在上單調(diào)遞增,當時,,當時,,因此,在上單調(diào)遞增,在上單調(diào)遞減,又,若,即時,無零點,若,即時,有一個零點,綜上可知,當時,在有1個零點,所以實數(shù)a的取值范圍.【點睛】思路點睛:涉及含參的函數(shù)零點問題,利用導(dǎo)數(shù)分類討論,研究函數(shù)的單調(diào)性、最值等,結(jié)合零點存在性定理,借助數(shù)形結(jié)合思想分析解決問題.18、(1)證明見解析(2)【解析】(1)由已知,以為坐標原點,建立空間直角坐標系,分別表示出B、D、E、F點的坐標,然后通過計算向量數(shù)量積來進行證明;(2)由第(1)建立的空間直角坐標系,分別表示出對應(yīng)點的坐標,然后計算平面與平面的法向量,然后通過法向量去計算兩平面所成的銳二面角即可.【小問1詳解】如圖,以為坐標原點,以,的方向分別為,軸的正方向建立如圖所示的空間直角坐標系,由,,,分別為,,的中點,則,,證明:因為,,所以,所以【小問2詳解】設(shè)平面的法向量為,因為,,所以,令,得設(shè)平面的法向量為,則令,得因為所以平面與平面所成銳二面角的余弦值為19、(1)(2)【解析】(1)利用與的關(guān)系求解即可;(2)首先利用裂項求和得到,從而得到,再解不等式即可.【小問1詳解】令,則,當時,,當時,也符合上式,即數(shù)列的通項公式為.【小問2詳解】由(1)得,則,所以故可化為:,故,故不等式的解集為.20、(1)證明見解析,是鱉臑,四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直線與直線,直線與平面的垂直的轉(zhuǎn)化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,確定直角即可;(2)PD是陽馬P?ABCD的高,DE是鱉臑D?BCE的高,BC⊥CE,,由此能求出的值(3)根據(jù)公理2得出DG是平面DEF與平面ACBD的交線.利用直線與平面的垂直判斷出DG⊥DF,DG⊥DB,根據(jù)平面角的定義得出∠BDF是面DEF與面ABCD所成二面角的平面角,轉(zhuǎn)化到直角三角形求解即可【小問1詳解】因為PD⊥底面ABCD,所以PD⊥BC,由底面ABCD為長方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE?平面PDC,所以BC⊥DE又因為PD=CD,點E是PC的中點,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,即四面體BDEF是一個鱉臑,其四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB;【小問2詳解】由已知,PD是陽馬P?ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,點E是PC的中點,∴,∴【小問3詳解】如圖所示,在面BPC內(nèi),延長BC與FE交于點G,則DG是平面DEF與平面ABCD的交線由(1)知,PB⊥平面DEF,所以PB⊥DG又因為PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF與面ABCD所成二面角的平面角,設(shè)PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,則,解得所以故當面DEF與面ABCD所成二面角的大小為時,21、(1);(2).【解析】(1)利用橢圓的定義即求;(2)由直線方程與橢圓方程聯(lián)立,可解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電力工業(yè)概況》課件
- 小學(xué)一年級100以內(nèi)口算題
- 小學(xué)三年級多位數(shù)加減法脫式計算練習(xí)題
- 銀行績效考核總結(jié)
- 航空航天行業(yè)會計工作總結(jié)
- 《課程TMA系統(tǒng)篇》課件
- 公益機構(gòu)后勤管理工作概述
- 班主任與家校溝通的藝術(shù)與實踐
- 2023-2024學(xué)年河南省周口市部分校高三(下)開學(xué)地理試卷(2月份)
- 《創(chuàng)新的內(nèi)涵培訓(xùn)》課件
- 醫(yī)學(xué)專家談靈芝孢子粉課件
- 彈性力學(xué)19年 吳家龍版學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 有沒有租學(xué)位的協(xié)議書
- 車載智能計算芯片白皮書
- 住宅小區(qū)綠化管理規(guī)定
- 土建工程定額計價之建筑工程定額
- 2022年7月云南省普通高中學(xué)業(yè)水平考試物理含答案
- 學(xué)校安全工作匯報PPT
- 一年級語文上冊《兩件寶》教案1
- 關(guān)注健康預(yù)防甲流甲型流感病毒知識科普講座課件
- 咨詢公司工作總結(jié)(共5篇)
評論
0/150
提交評論