版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省潮州市名校2025屆高二數(shù)學第一學期期末學業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,點P是橢圓上的動點,,,則的最小值為()A. B.C D.2.已知等差數(shù)列的前項和為,若,則()A B.C. D.3.已知橢圓,則它的短軸長為()A.2 B.4C.6 D.84.已知空間四個點,,,,則直線AD與平面ABC所成的角為()A. B.C. D.5.已知點在拋物線的準線上,則該拋物線的焦點坐標是()A. B.C. D.6.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點E是棱PC的中點,作,交PB于F.下面結(jié)論正確的個數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點B到平面PAC的距離為.A.1 B.2C.3 D.47.已知橢圓的左右焦點分別為,,點B為短軸的一個端點,則的周長為()A.20 B.18C.16 D.98.頂點在原點,關(guān)于軸對稱,并且經(jīng)過點的拋物線方程為()A. B.C. D.9.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)10.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.11.觀察數(shù)列,(),,()的特點,則括號中應填入的適當?shù)臄?shù)為()A. B.C. D.12.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則_________14.如圖,橢圓左頂點為軸上一點滿足,且線段與橢圓交于點是以為底邊的等腰三角形,則橢圓離心率為__________.15.設(shè)函數(shù),若存在實數(shù)使得成立,則的取值范圍是__________.16.設(shè)函數(shù),,對任意的,都有成立,則實數(shù)的取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是等差數(shù)列,是等比數(shù)列,且(1)求,的通項公式;(2)設(shè),求數(shù)列的前項和.18.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)過點作圓C的切線,求切線的方程19.(12分)在直角坐標系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.(1)寫出曲線C的極坐標方程;(2)已知直線與曲線C相交于A,B兩點,求.20.(12分)已知等差數(shù)列滿足,(1)求的通項公式;(2)若等比數(shù)列的前n項和為,且,,,求滿足的n的最大值21.(12分)已知等差數(shù)列的首項為2,公差為8.在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構(gòu)成一個新的等差數(shù)列.(1)求數(shù)列的通項公式;(2)若,,,,是從中抽取的若干項按原來的順序排列組成的一個等比數(shù)列,,,令,求數(shù)列的前項和.22.(10分)如圖,在三棱柱中,點在底面內(nèi)的射影恰好是點,是的中點,且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由橢圓的定義可得;利用基本不等式,若,則,當且僅當時取等號.【詳解】根據(jù)橢圓的定義可知,,即,因為,,所以,當且僅當,時等號成立.故選:A2、B【解析】利用等差數(shù)列的性質(zhì)可求得的值,再結(jié)合等差數(shù)列求和公式以及等差中項的性質(zhì)可求得的值.【詳解】由等差數(shù)列的性質(zhì)可得,則,故.故選:B.3、B【解析】根據(jù)橢圓短軸長的定義進行求解即可.【詳解】由橢圓的標準方程可知:,所以該橢圓的短軸長為,故選:B4、A【解析】根據(jù)向量法求出線面角即可.【詳解】設(shè)平面的法向量為,直線AD與平面ABC所成的角為令,則則故選:A【點睛】本題主要考查了利用向量法求線面角,屬于中檔題.5、C【解析】首先表示出拋物線的準線,根據(jù)點在拋物線的準線上,即可求出參數(shù),即可求出拋物線的焦點.【詳解】解:拋物線的準線為因為在拋物線的準線上故其焦點為故選:【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題.6、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點,連接底面是正方形,點是的中點在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設(shè)B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個數(shù)為4.故選:D.7、B【解析】根據(jù)橢圓的定義求解【詳解】由橢圓方程知,所以,故選:B8、C【解析】根據(jù)題意,設(shè)拋物線的方程為,進而待定系數(shù)求解即可.【詳解】解:由題,設(shè)拋物線的方程為,因為在拋物線上,所以,解得,即所求拋物線方程為故選:C9、C【解析】根據(jù)莖葉圖依次計算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.10、B【解析】先證明點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標系,利用向量法求解.【詳解】因為平面平面,所以A1C1//平面ACD1,則點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因為平面,所以平面,所以是平面一個法向量,所以平面ACD1的一個法向量為=(1,1,1),故所求的距離為.故選:B【點睛】方法點睛:求點到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.11、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項公式為,∴.故選:D12、B【解析】先求得直線過定點,再根據(jù)當點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內(nèi)部,當點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出函數(shù)的導數(shù),再令,即可得出答案.【詳解】解:由,得,所以.故答案為:.14、##【解析】根據(jù)題設(shè)條件可得坐標,代入橢圓方程后可求橢圓的離心率.【詳解】因為,故,,且在軸的正半軸上,則在第二象限中,故,代入橢圓方程有:即,故,故答案為:.15、【解析】將變形為,令,,分別研究其單調(diào)性及值域,使問題轉(zhuǎn)化為即可.【詳解】由題,,令,則,由,得,由,得,所以在遞減,在遞增,所以,令,則,由,得,由,得,所以在遞增,在遞減,所以,若存在實數(shù)使得成立,即存在實數(shù)使得成立,即存在實數(shù)使得恒成立所以,即,解得,所以取值范圍為.故答案為:【點睛】關(guān)鍵點點睛:本題解題關(guān)鍵是將所求問題轉(zhuǎn)為存在實數(shù)使得恒成立,結(jié)合的值域進一步轉(zhuǎn)化為存在實數(shù)使得恒成立,再只需即可.16、【解析】首先求得函數(shù)在區(qū)間上的最大值,然后分離參數(shù),利用導函數(shù)求最值即可確定實數(shù)的取值范圍.【詳解】∵在上恒成立,∴當時,取最大值1,∵對任意的,都有成立,∴在上恒成立,即在上恒成立,令,則,,∵在上恒成立,∴在上為減函數(shù),∵當時,,故當時,取最大值1,故,故答案為【點睛】本題考查的知識點是函數(shù)恒成立問題,利用導數(shù)研究函數(shù)的單調(diào)性,利用導數(shù)研究函數(shù)的最值,難度中檔三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)由,根據(jù)等比數(shù)列的性質(zhì)求得、的值,即可得的通項公式,再根據(jù)列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)結(jié)合(1)可得,根據(jù)錯位相減法,利用等比數(shù)列求和公式可得結(jié)果.【詳解】(1)等比數(shù)列的公比,所以,設(shè)等差數(shù)列公差為因為,,所以,即所以(2)由(1)知,,因此從而數(shù)列的前項和,,,兩式作差可得,,解得.【點睛】本題主要考查等比數(shù)列和等差數(shù)列的通項、等比數(shù)列的求和公式以及錯位相減法求數(shù)列的前項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫出“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式.18、(1)(2)或【解析】(1)由圓心在直線上,設(shè),由點在圓上,列方程求,由此求出圓心坐標及半徑,確定圓的方程;(2)當切線的斜率存在時,設(shè)其方程為,由切線的性質(zhì)列方程求,再檢驗直線是否為切線,由此確定答案.小問1詳解】因為圓C的圓心在直線上,設(shè)圓心的坐標為,圓C過點,,所以,即,解得,則圓心,半徑,所以圓的方程為;【小問2詳解】當切線的斜率存在時,設(shè)直線的方程為,即,因為直線和圓相切,得,解得,所以直線方程為,當切線的斜率不存在時,易知直線也是圓的切線,綜上,所求的切線方程為或19、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標方程即可.(2)首先聯(lián)立得到,再求的長度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標方程為.(2)聯(lián)立方程組,消去得,設(shè)點A,B對應的極徑分別為,,則,,所以.20、(1)(2)10【解析】(1)設(shè)等差數(shù)列公差為d,根據(jù)已知條件列關(guān)于和d的方程組即可求解;(2)設(shè)等比數(shù)列公比為q,根據(jù)已知條件求出和q,根據(jù)等比數(shù)列求和公式即可求出,再解關(guān)于n的不等式即可.【小問1詳解】由題意得,解得,∴【小問2詳解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值為1021、(1);(2)【解析】(1)由題意在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構(gòu)成一個新的等差數(shù)列,可知的公差,進而可求出其通項公式;(2)根據(jù)題意可得,進而得到,再代入中得,利用錯位相減即可求出前項和.【小問1詳解】由于等差數(shù)列的公差為8,在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構(gòu)成一個新的等差數(shù)列,則的公差,的首項和首項相同為2,則數(shù)列的通項公式為.【小問2詳解】由于,是等比數(shù)列的前兩項,且,,則,則等比數(shù)列的公比為3,則,即,.①.②.①減去②得..22、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點,為x、y、z軸正方向建
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44952-2024地面電場監(jiān)測技術(shù)要求
- 營銷培訓課件-公眾賬號微信營銷策劃方案
- 毛發(fā)囊腫的臨床護理
- 在省委第四巡視組巡視臨夏州情況反饋會上的主持講話
- 汗管棘皮瘤的臨床護理
- 孕期焦慮癥的健康宣教
- 多發(fā)性脂囊瘤的臨床護理
- 妊娠線的健康宣教
- X連鎖高IgM綜合征的健康宣教
- JJF(陜) 096-2022 氟化氫氣體檢測報警器校準規(guī)范
- 國家開放大學-工程力學(本)(閉卷)
- 江西旅游經(jīng)濟發(fā)展調(diào)查分析報告
- 中醫(yī)培訓課件:《中藥熱奄包技術(shù)》
- 尋方問藥縱橫談智慧樹知到期末考試答案2024年
- 景觀設(shè)計初學者實戰(zhàn)寶典-園林規(guī)劃設(shè)計智慧樹知到期末考試答案2024年
- (2024年)周黑鴨營銷策劃課件
- 2023年北京市中考英語試卷(附答案)
- 河南省城市生命線安全工程建設(shè)指引V1
- 股權(quán)劃轉(zhuǎn)方案
- 2023-2024學年宜賓市數(shù)學九年級上冊期末考試試題(含解析)
- 專家顧問聘用合同協(xié)議書范本(通用)(帶目錄)
評論
0/150
提交評論