廣東省東莞外國語學(xué)校2025屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
廣東省東莞外國語學(xué)校2025屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
廣東省東莞外國語學(xué)校2025屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
廣東省東莞外國語學(xué)校2025屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
廣東省東莞外國語學(xué)校2025屆高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省東莞外國語學(xué)校2025屆高二上數(shù)學(xué)期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個幾何體的三視圖都是半徑為1的圓,在該幾何體內(nèi)放置一個高度為1的長方體,則長方體的體積最大值為()A. B.C. D.12.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.3.設(shè)為等差數(shù)列的前項和,若,,則公差的值為()A. B.2C.3 D.44.過橢圓+=1左焦點F1引直線交橢圓于A、B兩點,F(xiàn)2是橢圓的右焦點,則△ABF2的周長是()A.20 B.18C.10 D.165.設(shè)函數(shù)若函數(shù)有兩個零點,則實數(shù)m的取值范圍是()A. B.C. D.6.設(shè)函數(shù),當(dāng)自變量t由2變到2.5時,函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.117.已知橢圓方程為,點在橢圓上,右焦點為F,過原點的直線與橢圓交于A,B兩點,若,則橢圓的方程為()A. B.C. D.8.已知是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.曲線在處的切線的傾斜角是()A. B.C. D.10.若定義在R上的函數(shù)滿足,則不等式的解集為()A. B.C. D.11.設(shè)數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.12.在等比數(shù)列{an}中,a3,a15是方程x2+6x+2=0的根,則的值為()A. B.C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.在等比數(shù)列中,若,,則數(shù)列的公比為___________.14.已知,滿足約束條件則的最小值為__________15.已知雙曲線左、右焦點分別為,,點P是雙曲線左支上一點且,則______16.在正項等比數(shù)列中,,,則的公比為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為3,直線與拋物線交于,兩點,為坐標(biāo)原點(1)求拋物線的方程;(2)求的面積.18.(12分)已知拋物線的焦點為,直線與拋物線的準(zhǔn)線交于點,為坐標(biāo)原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積19.(12分)已知橢圓的左焦點與拋物線的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓于兩點,點,且為定值(1)求橢圓的方程;(2)求面積的最大值20.(12分)已知等差數(shù)列滿足;正項等比數(shù)列滿足,,(1)求數(shù)列,的通項公式;(2)數(shù)列滿足,的前n項和為,求的最大值.21.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側(cè)面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當(dāng)直線與平面所成角的正弦值為時,求線段BD的長22.(10分)在等差數(shù)列中,設(shè)前項和為,已知,.(1)求的通項公式;(2)令,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意得到幾何體為半徑為1的球,長方體的體對角線為球的直徑時,長方體體積最大,設(shè)出長方體的長和寬,得到等量關(guān)系,利用基本不等式求解體積最大值.【詳解】由題意得:此幾何體為半徑為1的球,長方體為球的內(nèi)接長方體時,體積最大,此時長方體的體對角線為球的直徑,設(shè)長方體長為,寬為,則由題意得:,解得:,而長方體體積為,當(dāng)且僅當(dāng)時等號成立,故選:B2、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.3、C【解析】根據(jù)等差數(shù)列前項和公式進(jìn)行求解即可.【詳解】,故選:C4、A【解析】根據(jù)橢圓的定義求得正確選項.【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長為.故選:A5、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與最值,畫出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數(shù)有兩個零點,實數(shù)m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數(shù)的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,以及數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達(dá)形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應(yīng)用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)6、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.7、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.8、D【解析】根據(jù)復(fù)數(shù)的幾何意義即可確定復(fù)數(shù)所在象限【詳解】復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第四象限故選:D9、D【解析】求出函數(shù)的導(dǎo)數(shù),再求出并借助導(dǎo)數(shù)的幾何意義求解作答.【詳解】由求導(dǎo)得:,則有,因此,曲線在處的切線的斜率為,所以曲線在處切線的傾斜角是.故選:D10、B【解析】構(gòu)造函數(shù),根據(jù)題意,求得其單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】構(gòu)造函數(shù),則,故在上單調(diào)遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,以及利用函數(shù)單調(diào)性求解不等式,解決本題的關(guān)鍵是根據(jù)題意構(gòu)造函數(shù),屬中檔題.11、A【解析】設(shè)等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進(jìn)而可求得所求代數(shù)式的值.【詳解】設(shè)等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.12、B【解析】由韋達(dá)定理得a3a15=2,由等比數(shù)列通項公式性質(zhì)得:a92=a3a15=a2a16=2,由此求出答案【詳解】解:∵在等比數(shù)列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故選B【點睛】本題考查等比數(shù)列中兩項積與另一項的比值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】求出等比數(shù)列的公比,利用定義可求得數(shù)列的公比.【詳解】設(shè)等比數(shù)列的公比為,則,因此,數(shù)列的公比為.故答案為:.14、2【解析】由題意,根據(jù)約束條件作出可行域圖,如圖所示,將目標(biāo)函數(shù)轉(zhuǎn)化為,作出其平行直線,并將其在可行域內(nèi)平行上下移動,當(dāng)移到頂點時,在軸上的截距最小,即.15、3【解析】根據(jù)雙曲線方程求出,再根據(jù)雙曲線的定義可知,即可得到、,再由正弦定理計算可得;【詳解】解:因為雙曲線為,所以、,因為點P是雙曲線左支上一點且,所以,所以,,在中,由正弦定理可得,所以;故答案為:16、3【解析】由題設(shè)知等比數(shù)列公比,根據(jù)已知條件及等比數(shù)列通項公式列方程求公比即可.【詳解】由題設(shè),等比數(shù)列公比,且,所以,可得或(舍),故公比為3.故答案為:3三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題意可設(shè)拋物線的方程為y2=2px(p>0),運(yùn)用拋物線的定義,可得23,解得p=2,進(jìn)而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關(guān)系和弦長公式,算出|AB|;利用點到直線的距離公式算出點O到直線AB的距離,即可求出△AOB的面積【詳解】(1)拋物線C的頂點在原點,焦點在x軸上,且過一點P(2,m),可設(shè)拋物線的方程為y2=2px(p>0),P(2,m)到焦點的距離為3,即有P到準(zhǔn)線的距離為6,即23,解得p=2,即拋物線的標(biāo)準(zhǔn)方程為y2=4x;(2)聯(lián)立方程化簡,得x2﹣6x+1=0設(shè)交點為A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8點O到直線l的距離d,所以△AOB的面積為S|AB|?d82【點睛】本題考查拋物線的方程的求法及拋物線定義的應(yīng)用,考查待定系數(shù)法的運(yùn)用,考查求焦點弦AB與原點構(gòu)成的△AOB面積,屬于中檔題18、(1)(2)【解析】(1)根據(jù)題意建立關(guān)于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達(dá)定理整體思想求的長,再求點到直線的距離,進(jìn)而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設(shè),,則,從而因為直線過拋物線的焦點,所以故的面積為19、(1)(2)【解析】(1)由拋物線焦點可得c,再根據(jù)離心率可得a,即得b;(2)先設(shè)直線方程x=ty+m,根據(jù)向量數(shù)量積表示,將直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理代入化簡可得為定值的條件,解出m;根據(jù)點到直線距離得三角形的高,利用弦公式可得底,根據(jù)面積公式可得關(guān)于t的函數(shù),最后根據(jù)基本不等式求最值【詳解】試題解析:解:(1)設(shè)F1(﹣c,0),∵拋物線y2=﹣4x的焦點坐標(biāo)為(﹣1,0),且橢圓E的左焦點F與拋物線y2=﹣4x的焦點重合,∴c=1,又橢圓E的離心率為,得a=,于是有b2=a2﹣c2=1.故橢圓Γ的標(biāo)準(zhǔn)方程為:(2)設(shè)A(x1,y1),B(x2,y2),直線l的方程為:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣要使為定值,則,解得m=1或m=(舍)當(dāng)m=1時,|AB|=|y1﹣y2|=,點O到直線AB的距離d=,△OAB面積S=∴當(dāng)t=0,△OAB面積的最大值為.20、(1),(2)8【解析】(1)利用已知的關(guān)系把替換成,再把兩式作差后整理即得通項公式,的通項公式可由已知條件建立基本量的方程求解.(2)由的通項公式可判斷,,,當(dāng)時,所有正項的和即為的最大項的值.小問1詳解】,,兩式相減得所以,又也滿足,故;設(shè)等比數(shù)列的公比為,由得,即,因為,即,,(負(fù)值舍去),所以【小問2詳解】由題意,,則,,,且當(dāng)時,所以的最大值是.21、(1)(2)或【解析】(1)建立空間直角坐標(biāo)系,利用向量法求得直線與所成角的余弦值.(2)結(jié)合直線與平面所成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論