黑龍江省哈爾濱市阿城區(qū)第二中學2025屆數(shù)學高二上期末綜合測試試題含解析_第1頁
黑龍江省哈爾濱市阿城區(qū)第二中學2025屆數(shù)學高二上期末綜合測試試題含解析_第2頁
黑龍江省哈爾濱市阿城區(qū)第二中學2025屆數(shù)學高二上期末綜合測試試題含解析_第3頁
黑龍江省哈爾濱市阿城區(qū)第二中學2025屆數(shù)學高二上期末綜合測試試題含解析_第4頁
黑龍江省哈爾濱市阿城區(qū)第二中學2025屆數(shù)學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省哈爾濱市阿城區(qū)第二中學2025屆數(shù)學高二上期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數(shù)學著作《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤”意思是:“現(xiàn)有一根金杖,長5尺,頭部1尺,重4斤;尾部1尺,重2斤;若該金杖從頭到尾每一尺重量構(gòu)成等差數(shù)列,其中重量為,則的值為()A.4 B.12C.15 D.182.命題:“,”的否定形式為()A., B.,C., D.,3.“楊輝三角”是中國古代重要的數(shù)學成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù)1,3,6,10,…構(gòu)成的數(shù)列的第n項,則的值為()A.1225 B.1275C.1326 D.13624.如圖,某圓錐軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.5.閱讀如圖所示程序框圖,運行相應的程序,輸出S的結(jié)果是()A.128 B.64C.16 D.326.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.57.從1,2,3,4,5中任取2個不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.8.已知公差為的等差數(shù)列滿足,則()A B.C. D.9.在平面上有一系列點,對每個正整數(shù),點位于函數(shù)的圖象上,以點為圓心的與軸都相切,且與彼此外切.若,且,,的前項之和為,則()A. B.C. D.10.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.11.函數(shù)在處有極小值5,則()A. B.C.或 D.或312.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線l過拋物線的焦點F,與拋物線交于A,B兩點,若,則直線l的斜率為______14.設(shè)為等差數(shù)列的前n項和,若,,則______15.數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖),給出下列三個結(jié)論:①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);②曲線C上任意一點到原點的距離都不超過;③曲線C所圍成的“心形”區(qū)域的面積小于3;其中,所有正確結(jié)論的序號是________16.已知△ABC的周長為20,且頂點,則頂點A的軌跡方程是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.18.(12分)如圖,在三棱錐中,是邊長為2的等邊三角形,,O是BC的中點,(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點,當時,二面角E-BD-C大小為60°,求t的值19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求B.(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個條件中任選一個,補充在橫線上.注:如果選擇多個條件分別解答,按第一個解答計分.20.(12分)2021年10月16日,搭載“神舟十三號”的火箭發(fā)射升空,有很多民眾通過手機、電視等方式觀看有關(guān)新聞.某機構(gòu)將關(guān)注這件事的時間在2小時以上的人稱為“天文愛好者”,否則稱為“非天文愛好者”,該機構(gòu)通過調(diào)查,從參與調(diào)查的人群中隨機抽取100人進行分析,得到下表(單位:人):天文愛好者非天文愛好者合計女203050男351550合計5545100(1)能否有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關(guān)?(2)現(xiàn)從抽取的女性人群中,按“天文愛好者”和“非天文愛好者”這兩種類型進行分層抽樣抽取5人,然后再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,求X的分布列和數(shù)學期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82821.(12分)已知點關(guān)于直線的對稱點為Q,以Q為圓心的圓與直線相交于A,B兩點,且(1)求圓Q的方程;(2)過坐標原點O任作一直線交圓Q于C,D兩點,求證:為定值22.(10分)數(shù)列{}的首項為,且(1)證明數(shù)列為等比數(shù)列,并求數(shù)列{}的通項公式;(2)若,求數(shù)列{}的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出公差,再利用公式可求總重量.【詳解】設(shè)頭部一尺重量為,其后每尺重量依次為,由題設(shè)有,,故公差為.故中間一尺的重量為所以這5項和為.故選:C.2、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.3、B【解析】觀察前4項可得,從而可求得結(jié)果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B4、C【解析】建立空間直角坐標系,分別得到,然后根據(jù)空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.5、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C6、C【解析】作出不等式組對應的可行域,再利用數(shù)形結(jié)合分析求解.【詳解】解:作出不等式組對應的可行域為如圖所示的陰影部分區(qū)域,由得,它表示斜率為縱截距為的直線系,當直線平移到點時,縱截距最大,最大.聯(lián)立直線方程得得.所以.故選:C7、B【解析】利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎(chǔ)題.8、C【解析】根據(jù)等差數(shù)列前n項和,即可得到答案.【詳解】∵數(shù)列是公差為的等差數(shù)列,∴,∴.故選:C9、C【解析】根據(jù)兩圓的幾何關(guān)系及其圓心在函數(shù)的圖象上,即可得到遞推關(guān)系式,通過構(gòu)造等差數(shù)列求得的通項公式,得出,最后利用裂項相消,求出數(shù)列前項和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數(shù)列且,,則,,則,即,故答案選:.10、B【解析】先證明點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標系,利用向量法求解.【詳解】因為平面平面,所以A1C1//平面ACD1,則點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因為平面,所以平面,所以是平面一個法向量,所以平面ACD1的一個法向量為=(1,1,1),故所求的距離為.故選:B【點睛】方法點睛:求點到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.11、A【解析】由題意條件和,可建立一個關(guān)于的方程組,解出的值,然后再將帶入到中去驗證其是否滿足在處有極小值,排除增根,即可得到答案.【詳解】由題意可得,則,解得,或.當,時,.由,得;由,得.則在上單調(diào)遞增,在上單調(diào)遞減,故在處有極大值5,不符合題意.當,時,.由,得;由,得.則在上單調(diào)遞減,在上單調(diào)遞增,故在處有極小值5,符合題意,從而故選:A.12、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】如圖,設(shè),兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,利用在直角三角形中,求得,從而得出直線的斜率【詳解】解:如圖,當在第一象限時,設(shè),兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,由拋物線的定義可知:設(shè),則,,,在直角三角形中,,所以,則直線的斜率;當在第四象限時,同理可得,直線的斜率,綜上可得直線l的斜率為;故答案為:14、36【解析】利用等差數(shù)列前n項和的性質(zhì)進行求解即可.【詳解】因為為等差數(shù)列的前n項和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:15、①②【解析】先根據(jù)圖像的對稱性找出整點,再判斷是否還有其他的整點在曲線上;找出曲線上離原點距離最大的點的區(qū)域,再由基本不等式得到最大值不超過;在心形區(qū)域內(nèi)找到一個內(nèi)接多邊形,該多邊形的面積等于3,從而判斷出“心形”區(qū)域的面積大于3.【詳解】①:由于曲線,當時,;當時,;當時,;由于圖形的對稱性可知,沒有其他的整點在曲線上,故曲線恰好經(jīng)過6個整點:,,,,,,所以①正確;②:由圖知,到原點距離的最大值是在時,由基本不等式,當時,,所以即,所以②正確;③:由①知長方形CDFE的面積為2,三角形BCE的面積為1,所以曲線C所圍成的“心形”區(qū)域的面積大于3,故③錯誤;故答案為:①②.【點睛】找準圖形的關(guān)鍵信息,比如對稱性,整點,內(nèi)接多邊形是解決本題的關(guān)鍵.16、.【解析】由周長確定,故軌跡是橢圓,注意焦點位置和摳除不符合條件的點即可.【詳解】解:,所以,,則頂點A的軌跡方程是.故答案為:.【點睛】考查橢圓定義的應用,基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由可證得平面,根據(jù)線面平行的性質(zhì)可證得結(jié)論;(2)以為坐標原點建立空間直角坐標系,設(shè),利用線面角的向量求法可表示出,分別在、和三種情況下,結(jié)合基本不等式求得所求最大值.【小問1詳解】四邊形為正方形,,又平面,平面,平面,又平面,平面平面,.【小問2詳解】以為坐標原點,為軸可建立如圖所示空間直角坐標系,則,,,,由(1)知:,則可設(shè),,,,設(shè)平面的法向量,則,令,則,,,設(shè)直線與平面所成角為,;當時,;當時,(當且僅當,即時取等號);當時,;綜上所述:直線與平面所成角正弦值的最大值為.18、(1)證明見解析(2)3【解析】(1)證得平面BCD,結(jié)合面面垂直判定定理即可得出結(jié)論;(2)建立空間直角坐標系,利用空間向量求二面角的公式可得,進而解方程即可求出結(jié)果.【小問1詳解】因為,O是BC的中點,所以,又因為,且,平面BCD,平面BCD,所以平面BCD,因為平面ABC,所以平面平面BCD【小問2詳解】連接OD,又因為是邊長為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O(shè)為坐標原點,OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標系設(shè),則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因為A-BCD的體積為,所以,解得,即A(0,0,3),,∵,∴,設(shè)平面BCD的法向量為,,則,取平面BCD的法向量為,,,設(shè)是平面BDE的法向量,則,∴取平面BDE的法向量,解得或(舍)19、(1)(2)答案見解析【解析】(1)由正弦定理及正弦的兩角和公式可求解;(2)選擇條件①,由正弦定理及輔助角公式可求解;選擇條件②,由余弦定理及正切三角函數(shù)可求解;選擇條件③,由余弦定理可求解【小問1詳解】由,可得,則.∴,在中,,則,∵,∴,∴,∵,∴.【小問2詳解】選擇條件①,在中,,可得,∵,∴,∴,根據(jù)輔助角公式,可得,∵,∴,即,故.選擇條件②由,得,∵,∴,因此,,整理得,即,則.在中,,∴.故.選擇條件③由,得,即,整理得,由于,則方程無解,故不存在這樣的三角形.20、(1)有(2)分布列見解析,【解析】(1)依題意由列聯(lián)表計算出卡方,與參考數(shù)值比較,即可判斷;(2)按照分層抽樣得到有2人為“天文愛好者”,有3人為“非天文愛好者”,記“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,即可求出所對應的概率,從而得到分布列與數(shù)學期望;【小問1詳解】解:由題意,所以有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關(guān).【小問2詳解】解:抽取的100人中女性人群有50人,其中“天文愛好者”有20人,“非天文愛好者”有30人,所以按分層抽樣在50個女性人群中抽取5人,則有2人為“天文愛好者”,有3人為“非天文愛好者”再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,∴,,,X的分布列如下表:X012P21、(1)(2)證明見解析【解析】(1)先求出點坐標,然后根據(jù)圓心到直線的距離公式及的值求出半徑即可求得圓的方程.(2)設(shè)出直線方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論