版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省白銀市靖遠一中2025屆數(shù)學(xué)高一上期末達標(biāo)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),,那么等于A. B.C. D.2.已知角的終邊經(jīng)過點,則A. B.C. D.3.已知集合,集合,則()A. B.C. D.4.已知關(guān)于的方程在區(qū)間上存在兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.5.已知向量,則ABC=A30 B.45C.60 D.1206.已知某扇形的面積為,圓心角為,則該扇形的半徑為()A.3 B.C.9 D.7.設(shè),,,則a,b,c的大小關(guān)系是()A. B.C. D.8.函數(shù)的零點一定位于下列哪個區(qū)間().A. B.C. D.9.已知函數(shù)f(x)=loga(x+1)(其中a>1),則f(x)<0的解集為()A. B.C. D.10.半徑為3cm的圓中,有一條弧,長度為cm,則此弧所對的圓心角為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,,則______12.函數(shù)零點的個數(shù)為______.13.已知角的終邊經(jīng)過點,且,則t的值為______14.若則______15.若正實數(shù)滿足,則的最大值是________16.已知函數(shù).(1)當(dāng)函數(shù)取得最大值時,求自變量x的集合;(2)完成下表,并在平面直角坐標(biāo)系內(nèi)作出函數(shù)在的圖象.x0y三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):012300.71.63.3為描述該超級快艇每小時航行費用Q與速度v的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b(1)試從中確定最符合實際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式;(2)該超級快艇應(yīng)以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用18.如圖,已知多面體PABCDE的底面ABCD是邊長為2的菱形,PA⊥底面ABCD,ED//PA,且PA=2ED=2(1)證明:平面PAC⊥平面PCE;(2)若直線PC與平面ABCD所成的角為45°,求直線CD與平面PCE所成角的正弦值19.(1)已知:,若是第四象限角,求,的值;(2)已知,求的值.20.某種商品在天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關(guān)系為,該商品在天內(nèi)日銷售量(件)與時間(天)之間滿足一次函數(shù)關(guān)系,具體數(shù)據(jù)如下表:第天(Ⅰ)根據(jù)表中提供的數(shù)據(jù),求出日銷售量關(guān)于時間的函數(shù)表達式;(Ⅱ)求該商品在這天中的第幾天的日銷售金額最大,最大值是多少?21.計算:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題意得.選B2、D【解析】由任意角的三角函數(shù)定義列式求解即可.【詳解】由角終邊經(jīng)過點,可得.故選D.【點睛】本題主要考查了任意角三角函數(shù)的定義,屬于基礎(chǔ)題.3、C【解析】解不等式求出集合A中的x的范圍,然后求出A的補集,再與集合B求交集即可.【詳解】集合,則集合,,故選:C.【點睛】本題考查了集合的基本運算,屬于基礎(chǔ)題.4、C【解析】本題首先可根據(jù)方程存在兩個不同的實數(shù)根得出、,然后設(shè),分為、兩種情況進行討論,最后根據(jù)對稱軸的相關(guān)性質(zhì)以及的大小即可得出結(jié)果.【詳解】因為方程存在兩個不同的實數(shù)根,所以,,解得或,設(shè),對稱軸為,當(dāng)時,因為兩個不同實數(shù)根在區(qū)間上,所以,即,解得,當(dāng)時,因為兩個不同的實數(shù)根在區(qū)間上,所以,即,解得,綜上所述,實數(shù)的取值范圍是,故選:C.5、A【解析】由題意,得,所以,故選A【考點】向量的夾角公式【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質(zhì)知,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關(guān)的問題6、A【解析】根據(jù)扇形面積公式求出半徑.【詳解】扇形的面積,解得:故選:A7、C【解析】先判斷,再判斷得到答案.【詳解】;;;,即故選:【點睛】本題考查了函數(shù)值的大小比較,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運用.8、C【解析】根據(jù)零點存在性定理可得結(jié)果.【詳解】因為函數(shù)的圖象連續(xù)不斷,且,,,,根據(jù)零點存在性定理可知函數(shù)的零點一定位于區(qū)間內(nèi).故選:C【點睛】關(guān)鍵點點睛:掌握零點存在性定理是解題關(guān)鍵.9、D【解析】因為已知a的取值范圍,直接根據(jù)根據(jù)對數(shù)函數(shù)的單調(diào)性和定點解出不等式即可【詳解】因為,所以在單調(diào)遞增,所以所以,解得故選D【點睛】在比較大小或解不等式時,靈活運用函數(shù)的單調(diào)性以及常數(shù)和對指數(shù)之間的轉(zhuǎn)化10、A【解析】利用弧長公式計算即可【詳解】,故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用指數(shù)的運算性質(zhì)可求得結(jié)果.【詳解】由指數(shù)的運算性質(zhì)可得.故答案為:.12、2【解析】將函數(shù)的零點的個數(shù)轉(zhuǎn)化為與的圖象的交點個數(shù),在同一直角坐標(biāo)系中畫出圖象即可得答案.【詳解】解:令,這,則函數(shù)的零點的個數(shù)即為與的圖象的交點個數(shù),如圖:由圖象可知,與的圖象的交點個數(shù)為2個,即函數(shù)的零點的個數(shù)為2.故答案為:2.【點睛】本題考查函數(shù)零點個數(shù)問題,可轉(zhuǎn)化為函數(shù)圖象交點個數(shù),考查學(xué)生的作圖能力和轉(zhuǎn)化能力,是基礎(chǔ)題.13、##0.5625【解析】根據(jù)誘導(dǎo)公式得sinα=-,再由任意角三角函數(shù)定義列方程求解即可.【詳解】因為,所以sinα=-.又角α的終邊過點P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案為:.14、【解析】15、4【解析】由基本不等式及正實數(shù)、滿足,可得的最大值.【詳解】由基本不等式,可得正實數(shù)、滿足,,可得,當(dāng)且僅當(dāng)時等號成立,故的最大值為,故答案為:4.16、(1)(2)答案見解析【解析】(1)由三角恒等變換求出解析式,再求得最大值時的x的集合,(2)由五點法作圖,列出表格,并畫圖即可.【小問1詳解】令,函數(shù)取得最大值,解得,所以此時x的集合為.【小問2詳解】表格如下:x0y11作圖如下,三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)選擇函數(shù)模型,函數(shù)解析式為;(2)以1百公里/小時航行時可使AB段的航行費用最少,且最少航行費用為2.1萬元.【解析】(1)對題中所給的三個函【解析】對應(yīng)其性質(zhì),結(jié)合題中所給的條件,作出正確的選擇,之后利用待定系數(shù)法求得解析式,得出結(jié)果;(2)根據(jù)題意,列出函數(shù)解析式,之后應(yīng)用配方法求得最值,得到結(jié)果.【詳解】(1)若選擇函數(shù)模型,則該函數(shù)在上為單調(diào)減函數(shù),這與試驗數(shù)據(jù)相矛盾,所以不選擇該函數(shù)模型若選擇函數(shù)模型,須,這與試驗數(shù)據(jù)在時有意義矛盾,所以不選擇該函數(shù)模型從而只能選擇函數(shù)模型,由試驗數(shù)據(jù)得,,即,解得故所求函數(shù)解析式為:(2)設(shè)超級快艇在AB段的航行費用為y(萬元),則所需時間(小時),其中,結(jié)合(1)知,所以當(dāng)時,答:當(dāng)該超級快艇以1百公里/小時航行時可使AB段的航行費用最少,且最少航行費用為2.1萬元【點睛】該題考查的是有關(guān)函數(shù)的應(yīng)用題,涉及到的知識點有函數(shù)模型的正確選擇,等量關(guān)系式的建立,配方法求二次式的最值,屬于簡單題目.18、(1)見解析(2)2【解析】1連接BD,交AC于點O,設(shè)PC中點為F,連接OF,EF,先證出BD∥EF,再證出EF⊥平面PAC,,結(jié)合面面垂直的判定定理即可證平面PAC⊥平面PCE;2先證明∠PCA=45°,設(shè)CD的中點為M,連接AM,所以點P到平面CDE的距離與點A到平面CDE的距離相等,即h2解析:(1)證明:連接BD,交AC于點O,設(shè)PC中點為F,連接OF,EF∵O,F(xiàn)分別為AC,PC的中點,∴OF//PA,且OF=1∵DE//PA,且DE=1∴OF//DE,且OF=DE,∴四邊形OFED為平行四邊形,∴OD//EF,即BD//EF,∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD,∵ABCD是菱形,∴BD⊥AC∵PA∩AC=A,∴BD⊥平面PAC,∵BD//EF,∴EF⊥平面PAC,∵FE?平面PCE,∴平面PAC⊥平面PCE(2)因為直線PC與平面ABCD所成角為45°,所以∠PCA=45°,所以AC=PA=2,所以AC=AB,故ΔABC為等邊三角形,設(shè)CD的中點為M,連接AM,則AM⊥CD,設(shè)點D到平面PCE的距離為h1,點P到平面CDE的距離為h則由VD-PCE=V因為ED⊥面ABCD,AM?面ABCD,所以ED⊥AM,又AM⊥CD,CD∩DE=D,∴AM⊥面CDE;因為PA//DE,PA?平面CDE,DE?面CDE,所以PA//面CDE,所以點P到平面CDE的距離與點A到平面CDE的距離相等,即h2因為PE=EC=5,PC=22,所以又SΔCDE=1,代入(*)得6?設(shè)CD與平面PCE所成角的正弦值為2419、(1),;(2)【解析】(1)由同角間的三角函數(shù)關(guān)系計算;(2)弦化切后代入計算【詳解】(1)因為,若是第四象限角,所以,;(2),則20、(Ⅰ)(,,)(Ⅱ)第天的日銷售金額最大,為元【解析】(Ⅰ)設(shè),代入表中數(shù)據(jù)可求出,得解析式;(Ⅱ)日銷售金額為,根據(jù)(1)及已知可得其表達式,這是一個分段函數(shù),分段求出最大值后比較即得最大值【詳解】(Ⅰ)設(shè)日銷售量關(guān)于時間的函數(shù)表達式為,依題意得:,解之得:,所以日銷售量關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國地埋式噴頭行業(yè)應(yīng)用前景與需求趨勢預(yù)測報告
- 2024-2030年中國固色劑行業(yè)競爭格局及發(fā)展風(fēng)險分析報告
- 2024-2030年中國原煤行業(yè)當(dāng)前經(jīng)濟形勢及投資建議研究報告
- 2024年度醫(yī)療耗材集中采購合同細則3篇
- 2024年度土地征收補償協(xié)議范本3篇
- 眉山職業(yè)技術(shù)學(xué)院《機械系統(tǒng)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 茅臺學(xué)院《陶瓷工藝原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年汽車銷售團隊績效考核合同范本3篇
- 2024年度智慧城市建設(shè)綜合解決方案投標(biāo)書實例3篇
- 茅臺學(xué)院《電工測試技術(shù)(上)》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東省高等醫(yī)學(xué)院校臨床教學(xué)基地水平評估指標(biāo)體系與標(biāo)準(zhǔn)(修訂)
- 大孔吸附樹脂技術(shù)課件
- 空白貨品簽收單
- 建筑電氣施工圖(1)課件
- 質(zhì)量管理體系運行獎懲考核辦法課案
- 泰康人壽養(yǎng)老社區(qū)介紹課件
- T∕CSTM 00584-2022 建筑用晶體硅光伏屋面瓦
- 2020春國家開放大學(xué)《應(yīng)用寫作》形考任務(wù)1-6參考答案
- 國家開放大學(xué)實驗學(xué)院生活中的法律第二單元測驗答案
- CAMDS操作方法及使用技巧
- Zarit照顧者負擔(dān)量表
評論
0/150
提交評論