江蘇省江陰市四校2025屆數(shù)學高三第一學期期末監(jiān)測試題含解析_第1頁
江蘇省江陰市四校2025屆數(shù)學高三第一學期期末監(jiān)測試題含解析_第2頁
江蘇省江陰市四校2025屆數(shù)學高三第一學期期末監(jiān)測試題含解析_第3頁
江蘇省江陰市四校2025屆數(shù)學高三第一學期期末監(jiān)測試題含解析_第4頁
江蘇省江陰市四校2025屆數(shù)學高三第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省江陰市四校2025屆數(shù)學高三第一學期期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.2.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.3.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數(shù)條直線與平行 B.且C.且 D.內的任何直線都與平行4.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度5.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)6.若實數(shù)、滿足,則的最小值是()A. B. C. D.7.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為()①②③④⑤A.1個 B.2個 C.3個 D.4個8.已知,,由程序框圖輸出的為()A.1 B.0 C. D.9.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數(shù)是()A.0 B.1 C.2 D.310.為計算,設計了如圖所示的程序框圖,則空白框中應填入()A. B. C. D.11.若集合,,則A. B. C. D.12.已知函數(shù)(e為自然對數(shù)底數(shù)),若關于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上有且僅有一個零點,則實數(shù)的取值范圍有___________.14.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團活動),排課要求為:語文、數(shù)學、外語、物理、化學各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學必須安排在上午且與外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.15.已知直線被圓截得的弦長為2,則的值為__16.兩光滑的曲線相切,那么它們在公共點處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),曲線在點處的切線方程為求a,b的值;證明:.18.(12分)已知函數(shù).(1)當時,解關于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.20.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.21.(12分)已知關于的不等式有解.(1)求實數(shù)的最大值;(2)若,,均為正實數(shù),且滿足.證明:.22.(10分)已知函數(shù),其中.(1)討論函數(shù)的零點個數(shù);(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.2、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調整.3、B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.4、D【解析】

先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎題型.5、C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.6、D【解析】

根據(jù)約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是基礎題.7、B【解析】

滿足(1)(2)的函數(shù)是偶函數(shù)且值域關于原點對稱,分別對所給函數(shù)進行驗證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【點睛】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質,考查學生邏輯推理與分析能力,是一道容易題.8、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.9、B【解析】

用空間四邊形對①進行判斷;根據(jù)公理2對②進行判斷;根據(jù)空間角的定義對③進行判斷;根據(jù)空間直線位置關系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數(shù)形結合思想,化歸與轉化思想.10、A【解析】

根據(jù)程序框圖輸出的S的值即可得到空白框中應填入的內容.【詳解】由程序框圖的運行,可得:S=0,i=0滿足判斷框內的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應該不滿足判斷框內的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應是i<1.故選:A.【點睛】本題考查了當型循環(huán)結構,當型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時算法結束,屬于基礎題.11、C【解析】

解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.12、A【解析】

若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導數(shù)求出的最小值,分別畫出與的圖象,結合圖象可得.【詳解】解:,∴,設,∴,當時,,函數(shù)單調遞增,當時,,函數(shù)單調遞減,∴,當時,,當,,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導數(shù)研究函數(shù)的單調性,考查了數(shù)形結合思想,考查了數(shù)學運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】

函數(shù)的零點方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點方程在區(qū)間的根,所以,解得:,,因為函數(shù)在區(qū)間上有且僅有一個零點,所以或,即或.【點睛】本題考查函數(shù)的零點與方程根的關系,在求含絕對值方程時,要注意對絕對值內數(shù)的正負進行討論.14、1344【解析】

分四種情況討論即可【詳解】解:數(shù)學排在第一節(jié)時有:數(shù)學排在第二節(jié)時有:數(shù)學排在第三節(jié)時有:數(shù)學排在第四節(jié)時有:所以共有1344種故答案為:1344【點睛】考查排列、組合的應用,注意分類討論,做到不重不漏;基礎題.15、1【解析】

根據(jù)弦長為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,

因為直線被圓截得的弦長為2,

所以直線經(jīng)過圓心(1,1),

,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質,屬基礎題.16、【解析】

第一空:將圓與聯(lián)立,利用計算即可;第二空:找到兩外切的圓的圓心與半徑的關系,再將與聯(lián)立,得到,與結合可得為等差數(shù)列,進而可得.【詳解】當r1=1時,圓,與聯(lián)立消去得,則,解得;由圖可知當時,①,將與聯(lián)立消去得,則,整理得,代入①得,整理得,則.故答案為:;.【點睛】本題是拋物線與圓的關系背景下的數(shù)列題,關鍵是找到圓心和半徑的關系,建立遞推式,由遞推式求通項公式,綜合性較強,是一道難度較大的題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】分析:第一問結合導數(shù)的幾何意義以及切點在切線上也在函數(shù)圖像上,從而建立關于的等量關系式,從而求得結果;第二問可以有兩種方法,一是將不等式轉化,構造新函數(shù),利用導數(shù)研究函數(shù)的最值,從而求得結果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設則只需證明,設則,在上單調遞增,,使得且當時,,當時,當時,,單調遞減當時,,單調遞增,由,得,,設,,當時,,在單調遞減,,因此(方法二)先證當時,,即證設,則,且,在單調遞增,在單調遞增,則當時,(也可直接分析顯然成立)再證設,則,令,得且當時,,單調遞減;當時,,單調遞增.,即又,點睛:該題考查的是有關利用導數(shù)研究函數(shù)的綜合問題,在求解的過程中,涉及到的知識點有導數(shù)的幾何意義,有關切線的問題,還有就是應用導數(shù)證明不等式,可以構造新函數(shù),轉化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.18、(1);(2).【解析】

(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據(jù)絕對值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當時,,則當時,由得,,解得;當時,恒成立;當時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當時,①式等號成立,即.又因為,②當時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.19、(1)證明見解析;(2)【解析】

(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標系,求出平面的法向量,計算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標軸建立空間直角坐標系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.20、(1)見解析;(2)【解析】

(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結,則∴平面∴∥,∴四邊形是矩形設,得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質定理;線面平行的判定定理;線面垂直的性質定理;直線與平面所成的角.點評

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論