2025屆海南省天一大聯(lián)考高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
2025屆海南省天一大聯(lián)考高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
2025屆海南省天一大聯(lián)考高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
2025屆海南省天一大聯(lián)考高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
2025屆海南省天一大聯(lián)考高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆海南省天一大聯(lián)考高三數(shù)學第一學期期末經(jīng)典模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設,,則當時,的最大值是()A.8 B.9 C.10 D.112.如圖,在三棱柱中,底面為正三角形,側棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.3.從拋物線上一點(點在軸上方)引拋物線準線的垂線,垂足為,且,設拋物線的焦點為,則直線的斜率為()A. B. C. D.4.在原點附近的部分圖象大概是()A. B.C. D.5.已知集合,,且、都是全集(為實數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.6.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.7.在條件下,目標函數(shù)的最大值為40,則的最小值是()A. B. C. D.28.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.9.函數(shù)(或)的圖象大致是()A. B. C. D.10.已知,若對任意,關于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.11.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q12.若復數(shù)z滿足,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足,則的最小值為________.14.(5分)已知函數(shù),則不等式的解集為____________.15.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.16.已知函數(shù),若關于的方程恰有四個不同的解,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.18.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.19.(12分)聯(lián)合國糧農組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關關系,我們以“年份—2014”為橫坐標,“需求量”為縱坐標,請完成如下數(shù)據(jù)處理表格:年份—20140需求量—2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農組織計劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.20.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟利益的角度來考慮,小張應選擇哪種還款方式.參考數(shù)據(jù):.21.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.22.(10分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數(shù)列,∴.∵是以1為首項,2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學生對于數(shù)列公式方法的靈活運用.2、B【解析】

建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.3、A【解析】

根據(jù)拋物線的性質求出點坐標和焦點坐標,進而求出點的坐標,代入斜率公式即可求解.【詳解】設點的坐標為,由題意知,焦點,準線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質,考查運算求解能力;屬于基礎題.4、A【解析】

分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數(shù)的定義域為,定義域關于原點對稱,,則函數(shù)為奇函數(shù),排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調性、零點以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.5、C【解析】

根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補集和交集定義可求得結果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算,涉及到一元二次不等式和函數(shù)定義域的求解;關鍵是能夠根據(jù)韋恩圖確定所求集合.6、D【解析】

本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.7、B【解析】

畫出可行域和目標函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數(shù),根據(jù)圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學生的綜合應用能力.8、A【解析】

解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關系,結合數(shù)軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學運算能力.9、A【解析】

確定函數(shù)的奇偶性,排除兩個選項,再求時的函數(shù)值,再排除一個,得正確選項.【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關于軸對稱,排除B,C,當時,,排除D,故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時可通過研究函數(shù)的性質,如奇偶性、單調性、對稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負,以及函數(shù)值的變化趨勢,排除錯誤選項,得正確結論.10、B【解析】

構造函數(shù)(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數(shù)解,構造函數(shù),,通過導數(shù)研究單調性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結果.【詳解】構造函數(shù)(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數(shù)x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.11、C【解析】

解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C12、D【解析】

先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數(shù)的運算和模的計算,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】

先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得?!驹斀狻孔鞒霾坏仁浇M表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經(jīng)過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎題。14、【解析】

易知函數(shù)的定義域為,且,則是上的偶函數(shù).由于在上單調遞增,而在上也單調遞增,由復合函數(shù)的單調性知在上單調遞增,又在上單調遞增,故知在上單調遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調遞增,可得,則,解得,故不等式的解集為.15、【解析】

將代入求解即可;當為奇數(shù)時,,則轉化為,設,由單調性求得的最小值;同理,當為偶數(shù)時,,則轉化為,設,利用導函數(shù)求得的最小值,進而比較得到的最大值.【詳解】由題,,解得.當為奇數(shù)時,,由,得,而函數(shù)為單調遞增函數(shù),所以,所以;當為偶數(shù)時,,由,得,設,,單調遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導函數(shù)求最值,考查分類討論思想和轉化思想.16、【解析】

設,判斷為偶函數(shù),考慮x>0時,的解析式和零點個數(shù),利用導數(shù)分析函數(shù)的單調性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設,則在是偶函數(shù),當時,,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當時,,當時,,因此的圖象為因此實數(shù)的取值范圍是.【點睛】本題主要考查了函數(shù)的零點的個數(shù)問題,涉及構造函數(shù),函數(shù)的奇偶性,利用導數(shù)研究函數(shù)單調性,考查了數(shù)形結合思想方法,以及化簡運算能力和推理能力,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)或.【解析】試題分析:(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據(jù)絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價于或或,解得:或.故不等式的解集為或.(2)因為:所以,由題意得:,解得或.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.18、(1)見解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結論;(2)在點建立空間直角坐標系,利用二面角的余弦值為建立方程求得,在利用法向量求得和平面所成角的正弦值.試題解析:(Ⅰ)平面平面因為,所以,所以,所以,又,所以平面.因為平面,所以平面平面.(Ⅱ)如圖,以點為原點,分別為軸、軸、軸正方向,建立空間直角坐標系,則.設,則取,則為面法向量.設為面的法向量,則,即,取,則依題意,則.于是.設直線與平面所成角為,則即直線與平面所成角的正弦值為.19、(1)見解析;(2)能夠滿足.【解析】

(1)根據(jù)表中數(shù)據(jù),結合以“年份—2014”為橫坐標,“需求量”為縱坐標的要求即可完成表格;(2)根據(jù)表中及所給公式可求得線性回歸方程,由線性回歸方程預測2020年的糧食需求量,即可作出判斷.【詳解】(1)由所給數(shù)據(jù)和已知條件,對數(shù)據(jù)處理表格如下:年份—2014024需求量—25701929(2)由題意可知,變量與之間具有線性相關關系,由(1)中表格可得,,,,.由上述計算結果可知,所求回歸直線方程為,利用回歸直線方程,可預測2020年的糧食需求量為:(萬噸),因為,故能夠滿足該地區(qū)的糧食需求.【點睛】本題考查了線性回歸直線的求法及預測應用,屬于基礎題.20、(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數(shù)列,即可由等差數(shù)列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數(shù)列,記為,表示數(shù)列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設小張每月還款額為元,采取等額

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論