2024屆云南省曲靖市沾益區(qū)第四中學(xué)高三4月考試題-數(shù)學(xué)試題試卷_第1頁
2024屆云南省曲靖市沾益區(qū)第四中學(xué)高三4月考試題-數(shù)學(xué)試題試卷_第2頁
2024屆云南省曲靖市沾益區(qū)第四中學(xué)高三4月考試題-數(shù)學(xué)試題試卷_第3頁
2024屆云南省曲靖市沾益區(qū)第四中學(xué)高三4月考試題-數(shù)學(xué)試題試卷_第4頁
2024屆云南省曲靖市沾益區(qū)第四中學(xué)高三4月考試題-數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆云南省曲靖市沾益區(qū)第四中學(xué)高三4月考試題-數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計(jì)劃在高一年級每周星期一至星期五的每天閱讀半個小時(shí)中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計(jì)劃共有()A.120種 B.240種 C.480種 D.600種2.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對稱,且,若,則()A.0 B.1 C.673 D.6743.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.125.一個四面體所有棱長都是4,四個頂點(diǎn)在同一個球上,則球的表面積為()A. B. C. D.6.二項(xiàng)式展開式中,項(xiàng)的系數(shù)為()A. B. C. D.7.如果直線與圓相交,則點(diǎn)與圓C的位置關(guān)系是()A.點(diǎn)M在圓C上 B.點(diǎn)M在圓C外C.點(diǎn)M在圓C內(nèi) D.上述三種情況都有可能8.若向量,,則與共線的向量可以是()A. B. C. D.9.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.10.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點(diǎn),M為棱AD的中點(diǎn),設(shè)P,Q為底面ABCD內(nèi)的兩個動點(diǎn),滿足平面EFG,,則的最小值為()A. B. C. D.11.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.505012.劉徽是我國魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從4名男生和3名女生中選出4名去參加一項(xiàng)活動,要求男生中的甲和乙不能同時(shí)參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)14.如圖,機(jī)器人亮亮沿著單位網(wǎng)格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.15.曲線在點(diǎn)(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實(shí)數(shù)=____。16.已知正項(xiàng)等比數(shù)列中,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計(jì)局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn),在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:普查對象類別順利不順利合計(jì)企事業(yè)單位401050個體經(jīng)營戶10050150合計(jì)14060200(1)寫出選擇5個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;(3)以該小區(qū)的個體經(jīng)營戶為樣本,頻率作為概率,從全國個體經(jīng)營戶中隨機(jī)選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82818.(12分)已知函數(shù),.(1)當(dāng)時(shí),判斷是否是函數(shù)的極值點(diǎn),并說明理由;(2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.19.(12分)已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個動點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點(diǎn)C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.20.(12分)如圖,三棱柱中,側(cè)面是菱形,其對角線的交點(diǎn)為,且.(1)求證:平面;(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.21.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且是與的等差中項(xiàng).(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最小正整數(shù)的值.22.(10分)已知函數(shù)(1)若對任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

首先將五天進(jìn)行分組,再對名著進(jìn)行分配,根據(jù)分步乘法計(jì)數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計(jì)數(shù)原理可得不同的閱讀計(jì)劃共有:種本題正確選項(xiàng):【點(diǎn)睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計(jì)數(shù)原理的應(yīng)用,易錯點(diǎn)是忽略分組中涉及到的平均分組問題.2、B【解析】

由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進(jìn)行化簡可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)?,故,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.3、C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點(diǎn)定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.4、C【解析】

由開始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻浚蔬xC.【點(diǎn)睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。5、A【解析】

將正四面體補(bǔ)成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補(bǔ)形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點(diǎn)睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.6、D【解析】

寫出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.7、B【解析】

根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點(diǎn)到圓的圓心的距離大于半徑.即點(diǎn)與圓的位置關(guān)系是點(diǎn)在圓外.故選:【點(diǎn)睛】本題主要考查直線與圓相交的性質(zhì),考查點(diǎn)到直線距離公式的應(yīng)用,屬于中檔題.8、B【解析】

先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對應(yīng),縱坐標(biāo)與縱坐標(biāo)對應(yīng),切不可錯位.9、D【解析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.10、C【解析】

把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點(diǎn),連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點(diǎn)為,,當(dāng)且僅當(dāng)共線時(shí)取等號,∴所求最小值為.故選:C.【點(diǎn)睛】本題考查空間距離的最小值問題,解題時(shí)作出正方體的完整截面求出點(diǎn)軌跡是第一個難點(diǎn),第二個難點(diǎn)是求出點(diǎn)軌跡,第三個難點(diǎn)是利用對稱性及圓的性質(zhì)求得最小值.11、C【解析】

因?yàn)榛梅降拿啃?、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因?yàn)榛梅降拿啃?、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點(diǎn)睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.12、C【解析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由排列組合及分類討論思想分別討論:①設(shè)甲參加,乙不參加,②設(shè)乙參加,甲不參加,③設(shè)甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【詳解】①設(shè)甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設(shè)乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設(shè)甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【點(diǎn)睛】本題考查了排列組合及分類討論思想,準(zhǔn)確分類及計(jì)算是關(guān)鍵,屬中檔題.14、【解析】

分三步來考查,先從到,再從到,最后從到,分別計(jì)算出三個步驟中對應(yīng)的走法種數(shù),然后利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時(shí)有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時(shí)有種走法;③從到,由①可知有種走法.由分步乘法計(jì)數(shù)原理可知,共有種不同的走法.故答案為:.【點(diǎn)睛】本題考查格點(diǎn)問題的處理,考查分步乘法計(jì)數(shù)原理和組合計(jì)數(shù)原理的應(yīng)用,屬于中等題.15、或1【解析】

利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點(diǎn),由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點(diǎn)為,,切線與的交點(diǎn)為,可得,解得或?!军c(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運(yùn)用,三角形的面積求法。16、【解析】

利用等比數(shù)列的通項(xiàng)公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式以及等比中項(xiàng),需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)分層抽樣,簡單隨機(jī)抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】

(1)根據(jù)題意可以選用分層抽樣法,或者簡單隨機(jī)抽樣法.(2)由已知條件代入公式計(jì)算出結(jié)果,進(jìn)而可以得到結(jié)果.(3)由已知條件計(jì)算出的分布列,進(jìn)而求出的數(shù)學(xué)期望.【詳解】(1)分層抽樣,簡單隨機(jī)抽樣(抽簽亦可).(2)將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算得所以有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”.(3)以頻率作為概率,隨機(jī)選擇1家個體經(jīng)營戶作為普查對象,入戶登記順利的概率為.可取0,1,2,3,計(jì)算可得的分布列為:0123【點(diǎn)睛】本題考查了運(yùn)用數(shù)學(xué)模型解答實(shí)際生活問題,運(yùn)用合理的抽樣方法,計(jì)算以及數(shù)據(jù)的分布列和數(shù)學(xué)期望,需要正確運(yùn)用公式進(jìn)行求解,本題屬于??碱}型,需要掌握解題方法.18、(1)是函數(shù)的極大值點(diǎn),理由詳見解析;(2)1.【解析】

(1)將直接代入,對求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負(fù)情況,最后得出,是函數(shù)的極大值點(diǎn);(2)利用題目已有條件得,再證明時(shí),不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時(shí),.令,則當(dāng)時(shí),.即在內(nèi)為減函數(shù),且∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點(diǎn).(2)由題意,得,即.現(xiàn)證明當(dāng)時(shí),不等式成立,即.即證令則∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時(shí),.即當(dāng)時(shí),不等式成立.綜上,整數(shù)的最小值為.【點(diǎn)睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問題,為難題19、(1)y2=6x(2).【解析】

(1)根據(jù)拋物線定義,寫出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點(diǎn)坐標(biāo)表示出|AB|和點(diǎn)到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點(diǎn)F(,0)到準(zhǔn)線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設(shè)線段AB的中點(diǎn)為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點(diǎn)C為定點(diǎn),且點(diǎn)C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實(shí)根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當(dāng)且僅當(dāng)9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時(shí)等號成立,所以S△ABC的最大值為.【點(diǎn)睛】此題考查根據(jù)焦點(diǎn)和準(zhǔn)線關(guān)系求拋物線方程,根據(jù)直線與拋物線位置關(guān)系求解三角形面積的最值,表示三角形的面積關(guān)系常涉及韋達(dá)定理整體代入,拋物線中需要考慮設(shè)點(diǎn)坐標(biāo)的技巧,處理最值問題常用函數(shù)單調(diào)性求解或均值不等式求最值.20、(1)見解析;(2).【解析】

(1)根據(jù)菱形的特征和題中條件得到平面,結(jié)合線面垂直的定義和判定定理即可證明;

2建立空間直角坐標(biāo)系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點(diǎn),,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因?yàn)?,則在等腰直角三角形中,所以.在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論