版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆云南省騰沖縣第一中學(xué)高三下學(xué)期高考等值卷(二模)數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.842.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動點(diǎn),若點(diǎn),則的最小值為()A. B. C. D.3.在正方體中,點(diǎn)、分別為、的中點(diǎn),過點(diǎn)作平面使平面,平面若直線平面,則的值為()A. B. C. D.4.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或15.已知函數(shù)(),若函數(shù)有三個零點(diǎn),則的取值范圍是()A. B.C. D.6.復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.等差數(shù)列中,已知,且,則數(shù)列的前項(xiàng)和中最小的是()A.或 B. C. D.8.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.9.設(shè)集合,,則().A. B.C. D.10.設(shè)全集,集合,,則()A. B. C. D.11.正的邊長為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時四面體的外接球表面積為()A. B. C. D.12.設(shè)過拋物線上任意一點(diǎn)(異于原點(diǎn))的直線與拋物線交于兩點(diǎn),直線與拋物線的另一個交點(diǎn)為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.中,角的對邊分別為,且成等差數(shù)列,若,,則的面積為__________.14.在如圖所示的三角形數(shù)陣中,用表示第行第個數(shù),已知,且當(dāng)時,每行中的其他各數(shù)均等于其“肩膀”上的兩個數(shù)之和,即,若,則正整數(shù)的最小值為______.15.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.16.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會溝通的一個平臺.校團(tuán)委、學(xué)生會從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82818.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時,證明:.19.(12分)已知某種細(xì)菌的適宜生長溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時,該種細(xì)菌的繁殖數(shù)量的預(yù)報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.20.(12分)試求曲線y=sinx在矩陣MN變換下的函數(shù)解析式,其中M,N.21.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.22.(10分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因?yàn)?,,所以,解可得,,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題.2、B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點(diǎn)睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】
作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),,,因此,.故選:B.【點(diǎn)睛】本題考查線段長度比值的計算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計算能力,屬于中等題.4、D【解析】
求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點(diǎn)坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點(diǎn)為,代入直線方程得,解得或1.故選:D【點(diǎn)睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.5、A【解析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點(diǎn),等價于與有三個交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時與有兩個交點(diǎn),故只需當(dāng)時,與有一個交點(diǎn)即可.若當(dāng)時,時,顯然??=??(??)與??=4|??|有一個交點(diǎn)??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點(diǎn),故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點(diǎn),故不滿足題意;時,顯然與有一個交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個數(shù)求參數(shù)范圍,屬中檔題.6、A【解析】
試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點(diǎn):1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系7、C【解析】
設(shè)公差為,則由題意可得,解得,可得.令
,可得
當(dāng)時,,當(dāng)時,,由此可得數(shù)列前項(xiàng)和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,
則,解得
,.
令
,可得,故當(dāng)時,,當(dāng)時,,
故數(shù)列前項(xiàng)和中最小的是.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式的應(yīng)用,屬于中檔題.8、C【解析】
根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.9、D【解析】
根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項(xiàng)即可得到答案.【詳解】根據(jù)題意,則故選:D【點(diǎn)睛】此題考查集合的交并集運(yùn)算,屬于簡單題目,10、D【解析】
求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點(diǎn)睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、D【解析】
如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)?,?由正弦定理可得,故,又因?yàn)椋?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.12、C【解析】
畫出圖形,將三角形面積比轉(zhuǎn)為線段長度比,進(jìn)而轉(zhuǎn)為坐標(biāo)的表達(dá)式。寫出直線方程,再聯(lián)立方程組,求得交點(diǎn)坐標(biāo),最后代入坐標(biāo),求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點(diǎn)睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長的比例關(guān)系,進(jìn)而聯(lián)立方程組求解,是一道不錯的綜合題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.14、2022【解析】
根據(jù)條件先求出數(shù)列的通項(xiàng),利用累加法進(jìn)行求解即可.【詳解】,,,下面求數(shù)列的通項(xiàng),由題意知,,,,,,數(shù)列是遞增數(shù)列,且,的最小值為.故答案為:.【點(diǎn)睛】本題主要考查歸納推理的應(yīng)用,結(jié)合數(shù)列的性質(zhì)求出數(shù)列的通項(xiàng)是解決本題的關(guān)鍵.綜合性較強(qiáng),屬于難題.15、【解析】
先由三視圖在長方體中將其還原成直觀圖,再利用球的直徑是長方體體對角線即可解決.【詳解】由三視圖知該幾何體是一個三棱錐,如圖所示長方體對角線長為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計算能力,是一道基礎(chǔ)題.16、-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點(diǎn)即可.【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點(diǎn)睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)詳見解析.【解析】
(1)計算得到,由此可得結(jié)論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認(rèn)為愿意參加新生接待工作與性別有關(guān).(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、分層抽樣、超幾何分布的分布列和數(shù)學(xué)期望的求解;關(guān)鍵是能夠明確隨機(jī)變量服從于超幾何分布,進(jìn)而利用超幾何分布概率公式求得隨機(jī)變量每個取值所對應(yīng)的概率.18、(1)(2)證明見解析【解析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.所以是的最小值點(diǎn),,則,故.【點(diǎn)睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.19、(1)作圖見解析;更適合(2)(3)預(yù)報值為245【解析】
(1)由散點(diǎn)圖即可得到答案;(2)把兩邊取自然對數(shù),得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關(guān)于的散點(diǎn)圖,如圖所示:由散點(diǎn)圖可知,更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類型;(2)把兩邊取自然對數(shù),得,即,由.∴,則關(guān)于的回歸方程為;(3)當(dāng)時,計算可得;即溫度為27℃時,該種細(xì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全禿的臨床護(hù)理
- 產(chǎn)力異常的健康宣教
- JJF(陜) 069-2021 氣體流量計(熱氣體法)校準(zhǔn)規(guī)范
- JJF(陜) 020-2020 中心距卡尺校準(zhǔn)規(guī)范
- 課外閱讀推廣與活動設(shè)計計劃
- 美術(shù)教學(xué)評價體系構(gòu)建計劃
- 提升服務(wù)質(zhì)量構(gòu)建和諧生活部計劃
- 資本運(yùn)作投資合同三篇
- 優(yōu)化工作流程的詳細(xì)方案計劃
- 2024-2025學(xué)年年七年級數(shù)學(xué)人教版下冊專題整合復(fù)習(xí)卷28.1 銳角三角函數(shù)(一)同步測控優(yōu)化訓(xùn)練(含答案)
- 臨床試驗(yàn)監(jiān)查計劃+監(jiān)查報告+監(jiān)查記錄
- DB32T 4351-2022城市軌道交通結(jié)構(gòu)安全保護(hù)技術(shù)規(guī)程
- 道路運(yùn)輸企業(yè)兩類人員安全考核題庫題庫(1020道)
- 材料費(fèi)用的歸集和分配
- 計算機(jī)應(yīng)用基礎(chǔ)智慧樹知到答案章節(jié)測試2023年云南農(nóng)業(yè)職業(yè)技術(shù)學(xué)院
- JJF 1627-2017皂膜流量計法標(biāo)準(zhǔn)漏孔校準(zhǔn)規(guī)范
- GB/T 6403.3-2008滾花
- GB 14866-2006個人用眼護(hù)具技術(shù)要求
- 紅色中國風(fēng)春節(jié)習(xí)俗傳統(tǒng)文化小年P(guān)PT模板
- 廣東新高考選科選科解讀課件
- 華師大版數(shù)學(xué)七年級上冊教案4:5.2《平行線的判定》參考教案
評論
0/150
提交評論