版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省高二數(shù)學第一學期期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線:與直線:平行,則a的值是()A.1 B.C.或6 D.或72.丹麥數(shù)學家琴生(Jensen)是19世紀對數(shù)學分析作出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導函數(shù)為,在區(qū)間內(nèi)的導函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.3.已知,為雙曲線的兩個焦點,點P在雙曲線上且滿足,那么點P到x軸的距離為()A. B.C. D.4.設(shè)分別為圓和橢圓上的點,則兩點間的最大距離是A. B.C. D.5.設(shè),直線與直線平行,則()A. B.C. D.6.若曲線與曲線在公共點處有公共切線,則實數(shù)()A. B.C. D.7.直線經(jīng)過兩個定點,,則直線傾斜角大小是()A. B.C. D.8.設(shè)x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件9.已知向量,,且與互相垂直,則()A. B.C. D.10.某學生2021年共參加10次數(shù)學競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標準差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);11.南宋數(shù)學家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個球,第二層有3個球,第三層有6個球,…,則第十層球的個數(shù)為()A.45 B.55C.90 D.11012.函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為_______14.已知函數(shù),則曲線在點處的切線方程為______.15.已知等比數(shù)列的前n和為,若成等差數(shù)列,且,,則的值為_______________16.為和的等差中項,則_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.18.(12分)如圖,點分別在射線,上運動,且(1)求;(2)求線段的中點M的軌跡C的方程;(3)直線與,軌跡C及自上而下依次交于D,E,F(xiàn),G四點,求證:19.(12分)圓心為的圓經(jīng)過點,,且圓心在上,(1)求圓的標準方程;(2)過點作直線交圓于且,求直線的方程.20.(12分)甲、乙兩人獨立地對某一目標射擊,已知甲、乙能擊中的概率分別為,求:(1)甲、乙恰好有一人擊中的概率;(2)目標被擊中的概率21.(12分)在平面直角坐標系中,已知橢圓的焦點為,且過點,橢圓的上、下頂點分別為,右頂點為,直線過點且垂直于軸(1)求橢圓的標準方程;(2)若點在橢圓上(且在第一象限),直線與交于點,直線與軸交于點,試問:是否為定值?若是,請求出定值;若不是,請說明理由22.(10分)已知.(1)討論的單調(diào)性;(2)當有最大值,且最大值大于時,求取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)直線平行的充要條件即可求出【詳解】依題意可知,顯然,所以由可得,,解得或7故選:D2、B【解析】根據(jù)基本初等函數(shù)的導函數(shù)公式求各函數(shù)二階導函數(shù),判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內(nèi)有正有負,故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負,故不是“凸函數(shù)”;故選:B3、D【解析】設(shè),由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進而求得,最后利用等面積法,即可求解【詳解】設(shè),,為雙曲線的兩個焦點,設(shè)焦距為,,點P在雙曲線上,,,,,,的面積為,利用等面積法,設(shè)的高為,則為點P到x軸的距離,則,故選:D【點睛】本題考查雙曲線的性質(zhì),難度不大.4、D【解析】轉(zhuǎn)化為圓心到橢圓上點的距離的最大值加(半徑).【詳解】設(shè),圓心為,則,當時,取到最大值,∴最大值為故選:D.【點睛】本題考查圓上點與橢圓上點的距離的最值問題,解題關(guān)鍵是圓上的點轉(zhuǎn)化為圓心,利用圓心到動點距離的最值加(或減)半徑得出結(jié)論5、C【解析】根據(jù)直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經(jīng)檢驗,滿足題意.故選:C6、A【解析】設(shè)公共點為,根據(jù)導數(shù)的幾何意義可得出關(guān)于、的方程組,即可解得實數(shù)、的值.【詳解】設(shè)公共點為,的導數(shù)為,曲線在處的切線斜率,的導數(shù)為,曲線在處的切線斜率,因為兩曲線在公共點處有公共切線,所以,且,,所以,即解得,所以,解得,故選:A7、A【解析】由兩點坐標求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A8、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.9、D【解析】根據(jù)垂直關(guān)系可得,由向量坐標運算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.10、B【解析】根據(jù)平均數(shù)、標準差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢,標準差描述數(shù)據(jù)的波動大小估計數(shù)據(jù)的穩(wěn)定程度.故選:B.11、B【解析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達出來,第層有個球.【詳解】根據(jù)規(guī)律,可以得知:第一層有個球;第二層有個球;第三層有個球,則根據(jù)規(guī)律可知:第層有個球設(shè)第層的小球個數(shù)為,則有:故第十層球的個數(shù)為:故選:12、A【解析】根據(jù)函數(shù)的定義域及零點的情況即可得到答案.【詳解】函數(shù)的定義域為,則排除選項、,當時,,則在上單調(diào)遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造新函數(shù),求導根據(jù)導數(shù)大于等于零得到,構(gòu)造,求導得到單調(diào)區(qū)間,計算函數(shù)最小值得到答案.【詳解】當時,不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當時,,當時,,所以,所以故答案為:14、【解析】先求函數(shù)的導數(shù),再利用導數(shù)的幾何意義求函數(shù)在處的切線方程.【詳解】,,,所以曲線在點處的切線方程為,即.故答案為:【點睛】本題考查導數(shù)的幾何意義,重點考查計算能力,屬于基礎(chǔ)題型.15、107【解析】根據(jù)等比數(shù)列和等差數(shù)列的通項公式,根據(jù)題意列方程可得,從而求出或,再根據(jù),確定,進而求出,代入記得:.【詳解】由題意可設(shè)等比數(shù)列的公比為,首項為,由成等差數(shù)列可得:,代入可得:,解得:或,又因為,易知,又因為,,所以,,故答案為:107.【點睛】本題考查了等差中項和等比數(shù)列的通項公式,考查了和的關(guān)系,同時考查了計算能力,屬于中檔題.16、【解析】利用等差中項的定義可求得結(jié)果.【詳解】由等差中項的定義可得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結(jié)論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結(jié)合面面垂直的性質(zhì)定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結(jié)論【小問1詳解】證明:∵M,N分別為VA,VB的中點,∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC18、(1)2(2)(3)證明見詳解【解析】(1)用兩點間的距離公式和三角形的面積公式,結(jié)合已知直接可解;(2)根據(jù)中點坐標公式,結(jié)合(1)中結(jié)論可得;(3)要證,只需證和的中點重合,直接或利用韋達定理求出中點橫坐標,證明其相等即可.【小問1詳解】記直線的傾斜角為,則,易得所以因為,所以,整理得:【小問2詳解】設(shè)點M的坐標為,則即,由(1)知,所以,即【小問3詳解】要證,只需證和的中點重合,記D,E,F(xiàn),G的橫坐標分別為,易知直線的斜率(當時與漸近線平行或重合,此時與雙曲線最多一個交點)則解方程組,得解方程組,得將代入,得所以因為所以所以和的中點的橫坐標相等,所以和的中點重合,記其中點為N,則有,即19、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點坐標即為圓心坐標,再求得半徑后可得圓的標準方程;(2)檢驗直線斜率不存在時是否滿足題意,在斜率存在時設(shè)方程為,求得圓心到直線的距離,由勾股定理得弦長,由弦長為8得參數(shù),得直線方程【詳解】(1)由已知,中點坐標為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標準方程(2)由可得圓心到直線的距離當直線斜率不存在時,其方程為,當直線斜率存在時,設(shè)其方程為,則,解得,此時其方程為,所以直線方程為或.【點睛】方法點睛:本題考查求圓的標準方程,考查直線與圓相交弦長.求弦長方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長.求直線方程時注意檢驗直線斜率不存在的情形20、(1);(2).【解析】(1)分為甲擊中且乙沒有擊中,和乙擊中且甲沒有擊中兩種情況,進而根據(jù)獨立事件概率公式求得答案;(2)先考慮甲乙都沒有擊中,進而根據(jù)對立事件概率公式和獨立事件概率公式求得答案.【小問1詳解】設(shè)甲、乙分別擊中目標為事件,,易知,相互獨立且,,甲、乙恰好有一人擊中的概率為.【小問2詳解】目標被擊中的概率為.21、(1)(2)為定值,該定值為2【解析】(1)先根據(jù)焦點形式設(shè)出橢圓方程和焦距,根據(jù)橢圓經(jīng)過和半焦距為3易得橢圓的標準方程;(2)設(shè),分別表示出直線方程,進而求得點的縱坐標,點橫坐標,即可表示出,即可求得答案【小問1詳解】由焦點坐標可知,橢圓的焦點在軸上,所以設(shè)橢圓:,焦距為,因為橢圓經(jīng)過點,焦點為所以,,解得,所以橢圓的標準方程為;【小問2詳解】設(shè),由橢圓的方程可知,因為,則直線,由已知得,直線斜率均存在,則直線,令得,直線,令得,因為點在第一象限,所以,,則,又因為,即,所以所以為定值,該定值為2.22、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45155-2024質(zhì)量管理理解、評價和改進組織的質(zhì)量文化指南
- Perfluoropentane-Dodecafluoropentane-生命科學試劑-MCE-3888
- Ergocornine-生命科學試劑-MCE-6625
- 10-Norparvulenone-生命科學試劑-MCE-1894
- 二零二五年度智能制造股權(quán)融資協(xié)議
- 二零二五年度游戲軟件試用授權(quán)合同
- 二零二五年度企業(yè)退休人員再就業(yè)解除合同協(xié)議
- 2025年度貨運駕駛員綠色出行與節(jié)能減排合同
- 2025年度新能源項目電力施工簡易協(xié)議書
- 2025年度豪華公寓私人房屋轉(zhuǎn)租管理服務合同
- 2025-2030年中國反滲透膜行業(yè)市場發(fā)展趨勢展望與投資策略分析報告
- 湖北省十堰市城區(qū)2024-2025學年九年級上學期期末質(zhì)量檢測道德與法治試題 (含答案)
- 山東省濰坊市2024-2025學年高三上學期1月期末 英語試題
- 春節(jié)節(jié)后收心會
- 《榜樣9》觀后感心得體會四
- 七年級下冊英語單詞表(人教版)-418個
- 交警安全進校園課件
- (2024年高考真題)2024年普通高等學校招生全國統(tǒng)一考試數(shù)學試卷-新課標Ⅰ卷(含部分解析)
- HCIA-AI H13-311 v3.5認證考試題庫(含答案)
- 潤滑油過濾培訓
- 內(nèi)蒙自治區(qū)烏蘭察布市集寧二中2025屆高考語文全真模擬密押卷含解析
評論
0/150
提交評論