河南省通許縣麗星中學(xué)2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
河南省通許縣麗星中學(xué)2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
河南省通許縣麗星中學(xué)2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
河南省通許縣麗星中學(xué)2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
河南省通許縣麗星中學(xué)2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省通許縣麗星中學(xué)2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在空間四邊形中,,,,且,則()A. B.C. D.2.在四棱錐中,底面ABCD是正方形,E為PD中點(diǎn),若,,,則()A. B.C. D.3.已知圓,圓相交于P,Q兩點(diǎn),其中,分別為圓和圓的圓心.則四邊形的面積為()A.3 B.4C.6 D.4.設(shè)集合,集合,當(dāng)有且僅有一個(gè)元素時(shí),則r的取值范圍為()A.或 B.或C.或 D.或5.若,則下列等式一定成立的是()A. B.C. D.6.已知?jiǎng)訄AM與直線y=2相切,且與定圓C:外切,求動(dòng)圓圓心M的軌跡方程A. B.C. D.7.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.8.已知等差數(shù)列的前項(xiàng)和為,,公差,.若取得最大值,則的值為()A.6或7 B.7或8C.8或9 D.9或109.雙曲線C:的漸近線方程為()A. B.C. D.10.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測(cè)量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個(gè)測(cè)量基點(diǎn)與,現(xiàn)測(cè)得,,,在點(diǎn)測(cè)得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.11.直線的傾斜角是A. B.C. D.12.拋擲兩枚硬幣,若記出現(xiàn)“兩個(gè)正面”“兩個(gè)反面”“一正一反”的概率分別為,,,則下列判斷中錯(cuò)誤的是().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線的夾角大小等于_______14.六面體的所有棱長(zhǎng)都為2,底面ABCD是正方形,AC與BD的交點(diǎn)是O,若,則___________.15.如圖,在四棱錐中,平面,底面是菱形,且,則異面直線與所成的角的余弦值為______,點(diǎn)到平面的距離等于______.16.如圖,在棱長(zhǎng)為1的正方體中,點(diǎn)M為線段上的動(dòng)點(diǎn),下列四個(gè)結(jié)論:①存在點(diǎn)M,使得直線AM與直線夾角為30°;②存在點(diǎn)M,使得與平面夾角的正弦值為;③存在點(diǎn)M,使得三棱錐體積為;④存在點(diǎn)M,使得,其中為二面角的大小,為直線與直線AB所成的角則上述結(jié)論正確的有______.(填上正確結(jié)論的序號(hào))三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等差數(shù)列的前項(xiàng)和為,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)在四棱錐中,平面,底面是邊長(zhǎng)為2的菱形,分別為的中點(diǎn).(1)證明:平面;(2)求三棱錐的體積.19.(12分)已知函數(shù)(1)若在點(diǎn)處的切線與軸平行,求的值;(2)當(dāng)時(shí),求證:;(3)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍20.(12分)已知圓.(1)求過點(diǎn)M(2,1)的圓的切線方程;(2)直線過點(diǎn)且被圓截得的弦長(zhǎng)為2,求直線的方程;(3)已知圓的圓心在直線y=1上,與y軸相切,且與圓相外切,求圓的標(biāo)準(zhǔn)方程.21.(12分)已知拋物線上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4.(1)求拋物線E的方程;(2)點(diǎn)A、B為拋物線E上異于原點(diǎn)O的兩不同的點(diǎn),且滿足.若直線AB與橢圓恒有公共點(diǎn),求m的取值范圍.22.(10分)已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為2.(1)求C的方程:(2)過C上一動(dòng)點(diǎn)P作圓兩條切線,切點(diǎn)分別為A,B,求四邊形PAMB面積的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】..故選:A.2、C【解析】根據(jù)向量線性運(yùn)算法則計(jì)算即可.【詳解】故選:C3、A【解析】求得,由此求得四邊形的面積.【詳解】圓的圓心為,半徑;圓的圓心為,所以,由、兩式相減并化簡(jiǎn)得,即直線的方程為,到直線的距離為,所以,所以四邊形的面積為.故選:A4、B【解析】由已知得集合M表示以點(diǎn)圓心,以2半徑左半圓,與y軸的交點(diǎn)為,集合N表示以點(diǎn)為圓心,以r為半徑的圓,當(dāng)圓C與圓O相外切于點(diǎn)P,有且僅有一個(gè)元素時(shí),圓C過點(diǎn)M時(shí),有且有兩個(gè)元素,當(dāng)圓C過點(diǎn)N,有且僅有一個(gè)元素,由此可求得r的取值范圍.【詳解】解:由得,所以集合M表示以點(diǎn)圓心,以2半徑的左半圓,與y軸的交點(diǎn)為,集合表示以點(diǎn)為圓心,以r為半徑的圓,如下圖所示,當(dāng)圓C與圓O相外切于點(diǎn)P時(shí),有且僅有一個(gè)元素時(shí),此時(shí),當(dāng)圓C過點(diǎn)M時(shí),有兩個(gè)元素,此時(shí),所以,當(dāng)圓C過點(diǎn)N時(shí),有且僅有一個(gè)元素,此時(shí),所以,所以當(dāng)有且僅有一個(gè)元素時(shí),則r的取值范圍為或,故選:B.5、D【解析】利用復(fù)數(shù)除法運(yùn)算和復(fù)數(shù)相等可用表示出,進(jìn)而得到之間關(guān)系.【詳解】,,,則.故選:D.6、D【解析】由題意動(dòng)圓M與直線y=2相切,且與定圓C:外切∴動(dòng)點(diǎn)M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點(diǎn)M的軌跡是以C(0,-3)為焦點(diǎn),直線y=3為準(zhǔn)線的拋物線故所求M的軌跡方程為考點(diǎn):軌跡方程7、A【解析】構(gòu)造新函數(shù),以函數(shù)單調(diào)性把不等式轉(zhuǎn)化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調(diào)增函數(shù).由可得故選:A8、B【解析】根據(jù)題意可知等差數(shù)列是,單調(diào)遞減數(shù)列,其中,由此可知,據(jù)此即可求出結(jié)果.【詳解】在等差數(shù)列中,所以,所以,即,又等差數(shù)列中,公差,所以等差數(shù)列是單調(diào)遞減數(shù)列,所以,所以等差數(shù)列的前項(xiàng)和為取得最大值,則的值為7或8.故選:B.9、D【解析】根據(jù)給定的雙曲線方程直接求出其漸近線方程作答.【詳解】雙曲線C:的實(shí)半軸長(zhǎng),虛半軸長(zhǎng),即有,而雙曲線C的焦點(diǎn)在y軸上,所以雙曲線C的漸近線的方程為,即.故選:D10、D【解析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D11、D【解析】由方程得到斜率,然后可得其傾斜角.【詳解】因?yàn)橹本€的斜率為所以其傾斜角為故選:D12、A【解析】把拋擲兩枚硬幣的情況均列舉出來,利用古典概型的計(jì)算公式,把,,算出來,判斷四個(gè)選項(xiàng)的正誤.【詳解】?jī)擅队矌?,記為與,則拋擲兩枚硬幣,一共會(huì)出現(xiàn)的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯(cuò)誤,BCD正確故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.14、【解析】結(jié)合空間向量運(yùn)算求得.【詳解】,.所以.故答案為:15、①.②.【解析】因?yàn)榈酌媸橇庑?可得,則異面直線與所成的角和與所成的角相等,即可求得異面直線與所成的角的余弦值.在底面從點(diǎn)向作垂線,求證垂直平面,即可求得答案.【詳解】根據(jù)題意畫出其立體圖形:如圖底面是菱形,則異面直線與所成的角和直線與所成的角相等平面,平面又,底面是菱形即故:異面直線與所成的角的余弦值為:在底面從點(diǎn)向作垂線平面,平面,平面故是到平面的距離故答案為:,.【點(diǎn)睛】本題考查了求異面直線的夾角和點(diǎn)到面距離,解題關(guān)鍵是掌握將求異面直線夾角轉(zhuǎn)化為共面直線夾角的解法,考查了分析能力和推理能力,屬于基礎(chǔ)題.16、②③【解析】對(duì)①:由連接,,由平面,即可判斷;對(duì)③:設(shè)到平面的距離為,則,所以即可判斷;對(duì)④:以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,設(shè),利用向量法求出與,比較大小即可判斷;對(duì)②:設(shè)與平面夾角為,利用向量法求出,即可求解判斷.【詳解】解:對(duì)①:連接,,在正方體中,由平面,可得,又,,所以平面,所以,故①錯(cuò)誤;對(duì)③:設(shè)到平面的距離為,則,所以,故③正確;對(duì)④:以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,設(shè),則,0,,,0,,,,,,,,所以,,,,,,設(shè)平面的法向量為,,,則,即,取,,,又,1,是平面的一個(gè)法向量,又二面角為銳二面角或直角,所以,,,又,,,故④錯(cuò)誤對(duì)②:由④的解析知,,,,設(shè)平面的法向量為,則,即,取,則,設(shè)與平面夾角為,令,即,又,解得或,故②正確.故答案為:②③.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)已知條件求得等差數(shù)列的首項(xiàng)和公差,由此求得.(2)利用裂項(xiàng)求和法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,則,解得,.∴.【小問2詳解】由(1)知.∴.∴.18、(1)證明見解析(2)【解析】(1)取的中點(diǎn),利用三角形中位線定理可證明BG//EF,由線線平行,可得線面平行;(2根據(jù)圖像可得,以為底面,證明為高,利用三棱錐的體積公式,可得答案;【小問1詳解】取的中點(diǎn),因?yàn)闉榈闹悬c(diǎn),所以且,又因?yàn)闉榈闹悬c(diǎn),四邊形為菱形,所以且,所以且,故四邊形BFEG為平行四邊形,所以BG//EF,因?yàn)槊婷?,所以?【小問2詳解】因?yàn)榈酌媸沁呴L(zhǎng)為2的菱形,,則為正三角形,所以因?yàn)槊妫詾槿忮F的高所以三棱錐的體積.19、(1);(2)證明見解析;(3).【解析】(1)由可求得實(shí)數(shù)的值;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點(diǎn),且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因?yàn)榈亩x域?yàn)椋?由題意可得,解得.【小問2詳解】證明:當(dāng)時(shí),,該函數(shù)的定義域?yàn)?,,令,其中,則,故函數(shù)在上遞減,因?yàn)椋?,所以,存在,使得,則,且,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以,,所以,當(dāng)時(shí),.【小問3詳解】解:函數(shù)的定義域?yàn)椋?令,其中,則,所以,函數(shù)單調(diào)遞減,因?yàn)楹瘮?shù)有兩個(gè)零點(diǎn),等價(jià)于函數(shù)在上存在唯一的極值點(diǎn),且為極大值點(diǎn),且,即,所以,,令,其中,則,故函數(shù)在上單調(diào)遞增,又因?yàn)椋?,可得,?gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進(jìn)而構(gòu)造輔助函數(shù);(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對(duì)原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).20、(1)y=1;(2)x+y-2=0;(3).【解析】(1)將圓的一般方程化為圓的標(biāo)準(zhǔn)方程,結(jié)合圖形即可求出結(jié)果;(2)根據(jù)題意可知直線過圓心,利用直線的兩點(diǎn)式方程計(jì)算即可得出結(jié)果;(3)設(shè)圓E的圓心E(a,1),根據(jù)題意可得圓E的半徑為,結(jié)合圓與圓的位置關(guān)系和兩點(diǎn)距離公式計(jì)算求出,進(jìn)而得出圓的標(biāo)準(zhǔn)方程.【小問1詳解】圓,即,其圓心為,半徑為1.因?yàn)辄c(diǎn)(2,1)在圓上,如圖,所以切線方程為y=1;【小問2詳解】由題意得,圓的直徑為2,所以直線過圓心,由直線的兩點(diǎn)式方程,得,即直線的方程為x+y-2=0;【小問3詳解】因?yàn)閳AE的圓心在直線y=1上,設(shè)圓E的圓心E(a,1),由圓E與y軸相切,得R=a()又圓E與圓相外切,所以,由兩點(diǎn)距離公式得,所以,解得,所以圓心,,所以圓E的方程為.21、(1)(2)【解析】(1)由焦半徑公式可得,求解即可得答案;(2)由題意,直線AB斜率不為0,設(shè),,聯(lián)立直線與拋物線的方程,由韋達(dá)定理及可得,從而可得直線AB恒過定點(diǎn),進(jìn)而可得定點(diǎn)在橢圓內(nèi)部或橢圓上即可求解.【小問1詳解】解:因?yàn)閽佄锞€上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4,所以,解得,所以拋物線E的方程為;【小問2詳解】解:由題意,直線AB斜率不為0,設(shè),,由,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論