版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省安平縣安平中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.2.函數(shù)在處的切線方程為()A. B.C. D.3.用數(shù)學(xué)歸納法時(shí),從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.4.已知F是雙曲線的右焦點(diǎn),過F且垂直于x軸的直線交E于A,B兩點(diǎn),若E的漸近線上恰好存在四個(gè)點(diǎn),,,,使得,則E的離心率的取值范圍是()A. B.C. D.5.已知等比數(shù)列的前n項(xiàng)和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠16.已知,,則等于()A.2 B.C. D.7.已知橢圓方程為,點(diǎn)在橢圓上,右焦點(diǎn)為F,過原點(diǎn)的直線與橢圓交于A,B兩點(diǎn),若,則橢圓的方程為()A. B.C. D.8.在空間直角坐標(biāo)系中,已知點(diǎn),,則線段的中點(diǎn)坐標(biāo)與向量的模長(zhǎng)分別是()A.;5 B.;C.; D.;9.若拋物線x2=8y上一點(diǎn)P到焦點(diǎn)的距離為9,則點(diǎn)P的縱坐標(biāo)為()A. B.C.6 D.710.如圖,把橢圓的長(zhǎng)軸分成6等份,過每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于點(diǎn),F(xiàn)是橢圓C的右焦點(diǎn),則()A.20 B.C.36 D.3011.已知斜率為1的直線與橢圓相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),AB的中點(diǎn)為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.12.以原點(diǎn)為對(duì)稱中心的橢圓焦點(diǎn)分別在軸,軸,離心率分別為,直線交所得的弦中點(diǎn)分別為,,若,,則直線的斜率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)x,y滿足約束條件則的最大值為________14.已知數(shù)列滿足,,則______.15.已知函數(shù),則函數(shù)在上的最大值為_______16.在中.若成公比為的等比數(shù)列,則____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點(diǎn),為橢圓上一點(diǎn),的周長(zhǎng)為.(1)求橢圓的方程;(2)為圓上任意一點(diǎn),過作橢圓的兩條切線,切點(diǎn)分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,18.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長(zhǎng)為2的等邊三角形,M,N分別為AB,AP的中點(diǎn).過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值19.(12分)已知數(shù)列,若_________________(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和從下列三個(gè)條件中任選一個(gè)補(bǔ)充在上面的橫線上,然后對(duì)題目進(jìn)行求解①;②,,;③,點(diǎn),在斜率是2的直線上20.(12分)已知橢圓:的長(zhǎng)軸長(zhǎng)為6,離心率為,長(zhǎng)軸的左,右頂點(diǎn)分別為A,B(1)求橢圓的方程;(2)已知過點(diǎn)的直線交橢圓于M、N兩個(gè)不同的點(diǎn),直線AM,AN分別交軸于點(diǎn)S、T,記,(為坐標(biāo)原點(diǎn)),當(dāng)直線的傾斜角為銳角時(shí),求的取值范圍21.(12分)如圖①,等腰梯形中,,分別為的中點(diǎn),,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.22.(10分)設(shè)a,b是實(shí)數(shù),若橢圓過點(diǎn),且離心率為.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)過橢圓E的上頂點(diǎn)P分別作斜率為,的兩條直線與橢圓交于C,D兩點(diǎn),且,試探究過C,D兩點(diǎn)的直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);否則,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】當(dāng)平面時(shí),三棱錐體積最大,根據(jù)棱長(zhǎng)與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時(shí),三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查三棱錐與球的組合體的綜合問題,本題的關(guān)鍵是判斷當(dāng)平面時(shí),三棱錐體積最大.2、C【解析】利用導(dǎo)數(shù)的幾何意義即可求切線方程﹒【詳解】,,,,在處的切線為:,即﹒故選:C﹒3、C【解析】分別求出n=k時(shí)左端的表達(dá)式,和n=k+1時(shí)左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時(shí),左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時(shí),左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點(diǎn)睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時(shí)左端的表達(dá)式和n=k+1時(shí)左端的表達(dá)式,是解題的關(guān)鍵4、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個(gè)不同的交點(diǎn),則必有,又當(dāng)圓M經(jīng)過原點(diǎn)時(shí)此時(shí)以AB為直徑的圓M上與雙曲線E的漸近線有三個(gè)不同的交點(diǎn),不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個(gè)不同的交點(diǎn)當(dāng)圓M與漸近線相切時(shí),圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當(dāng)圓M經(jīng)過原點(diǎn)時(shí),,解得E的離心率為,此時(shí)以AB為直徑圓M與雙曲線E的漸近線有三個(gè)不同的交點(diǎn),不滿足條件.所以E的離心率的取值范圍是.故選:D5、D【解析】根據(jù)等比數(shù)列的通項(xiàng)公式,前n項(xiàng)和的意義,可逐項(xiàng)分析求解.【詳解】因?yàn)榈缺葦?shù)列的前n項(xiàng)和為,且滿足公比0<q<1,<0,所以當(dāng)時(shí),由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因?yàn)楫?dāng)時(shí),,,所以,即-,當(dāng)時(shí),,綜上,故C正確;若=,且k≠1,則,即,因?yàn)?,故,故矛盾,所以D不正確.故選:D6、D【解析】利用兩角和的正切公式計(jì)算出正確答案.【詳解】.故選:D7、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點(diǎn)在橢圓上得,由橢圓的對(duì)稱性可得,則,故橢圓方程為.故選:A.8、B【解析】根據(jù)給定條件利用中點(diǎn)坐標(biāo)公式及空間向量模長(zhǎng)的坐標(biāo)表示計(jì)算作答.【詳解】因點(diǎn),,所以線段的中點(diǎn)坐標(biāo)為,.故選:B9、D【解析】設(shè)出P的縱坐標(biāo),利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準(zhǔn)線方程為,P點(diǎn)到拋物線的焦點(diǎn)的距離等于到準(zhǔn)線的距離,設(shè)點(diǎn)縱坐標(biāo)為,則,解得:.故選:D10、D【解析】由橢圓的對(duì)稱性可知,,代入計(jì)算可得答案.【詳解】設(shè)橢圓左焦點(diǎn)為,連接由橢圓的對(duì)稱性可知,,所以.故選:D.11、B【解析】這是中點(diǎn)弦問題,注意斜率與橢圓a,b之間的關(guān)系.【詳解】如圖:依題意,假設(shè)斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點(diǎn)坐標(biāo)為,由題意,OP的斜率為,即,化簡(jiǎn)得:,,,;故選:B.12、A【解析】分類討論直線的斜率存在與不存在兩種情況,聯(lián)立直線與曲線方程,再根據(jù),求解.【詳解】設(shè)橢圓的方程分別為,,由可知,直線的斜率一定存在,故設(shè)直線的方程為.聯(lián)立得,故,;聯(lián)立得,則,.因?yàn)?,所以,所?又,所以,所以,所以,.故選:A.【點(diǎn)睛】此題利用設(shè)而不求的方法,找出、、、之間的關(guān)系,化簡(jiǎn)即可得到的值.此題的難點(diǎn)在于計(jì)算量較大,且容易計(jì)算出錯(cuò).二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】先作出可行域,由,得,作出直線,向下平移過點(diǎn)時(shí),取得最大值,求出點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點(diǎn)時(shí),取得最大值,由,得,即,所以的最大值為,故答案為:114、1023【解析】由數(shù)列遞推公式求特定項(xiàng),依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:102315、【解析】利用導(dǎo)數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點(diǎn),的大小求出在上的最大值.【詳解】因?yàn)?,則,令,即時(shí),函數(shù)單調(diào)遞增.令,即時(shí),函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點(diǎn)為,,即最大值為.故答案為:.16、【解析】由條件可得,即,由余弦定理可得答案.【詳解】由成公比為的等比數(shù)列,即由正弦定理可知所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是;【解析】(1)由離心率和焦點(diǎn)三角形周長(zhǎng)可求出,結(jié)合關(guān)系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當(dāng)平行于軸時(shí),設(shè)過的直線為,聯(lián)立橢圓方程,令化簡(jiǎn)得關(guān)于的二次方程,由韋達(dá)定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標(biāo)準(zhǔn)方程為:;【小問2詳解】如圖所示,當(dāng)平行于軸時(shí),恰好平行于軸,,,;當(dāng)不平行于軸時(shí),設(shè),設(shè)過點(diǎn)的直線為,聯(lián)立得,令得,化簡(jiǎn)得,設(shè),則,又,故,即.綜上所述,.18、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點(diǎn)O,則平面ABC,可得,由條件可得,以O(shè)坐標(biāo)原點(diǎn),分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因?yàn)镸,N分別為AB,AP的中點(diǎn),所以,又平面PBC,所以平面PBC,因?yàn)槠矫嫫矫?,所以【小?詳解】因?yàn)槠矫嫫矫鍭BC,取BC中點(diǎn)O,連接PO,AO,因?yàn)槭堑冗吶切?,所以,所以平面ABC,故,又因,所以,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,可得:,,,,,所以,,,設(shè)平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為19、答案見解析.【解析】(1)若選①,根據(jù)通項(xiàng)公式與前項(xiàng)和的關(guān)系求解通項(xiàng)公式即可;若選②,根據(jù)可得數(shù)列為等差數(shù)列,利用基本量法求解通項(xiàng)公式即可;若選③,根據(jù)兩點(diǎn)間的斜率公式可得,可得數(shù)列為等差數(shù)列進(jìn)而求得通項(xiàng)公式;(2)利用裂項(xiàng)相消求和即可【詳解】解:(1)若選①,由,所以當(dāng),,兩式相減可得:,而在中,令可得:,符合上式,故若選②,由(,)可得:數(shù)列為等差數(shù)列,又因?yàn)?,,所以,即,所以若選③,由點(diǎn),在斜率是2的直線上得:,即,所以數(shù)列為等差數(shù)列且(2)由(1)知:,所以20、(1)(2)【解析】(1)根據(jù)橢圓的長(zhǎng)軸和離心率,可求得,進(jìn)而得橢圓方程;(2)先判斷直線斜率為正,然后設(shè)出直線方程,和橢圓方程聯(lián)立,整理得根與系數(shù)的關(guān)系,利用直線方程求出點(diǎn)S、T的坐標(biāo),再根據(jù)確定的表達(dá)式,將根與系數(shù)的關(guān)系式代入化簡(jiǎn),求得結(jié)果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當(dāng)直線l的傾斜角為銳角時(shí),設(shè),設(shè)直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點(diǎn)S為;直線的方程是:,同理點(diǎn)T為·所以,因?yàn)?,所以,所以∵,∴,綜上,所以的范圍是21、(1)證明見解析.(2)2【解析】(1)根據(jù)面面平行的判定定理結(jié)合已知條件即可證明;(2)將所求四棱錐的體積轉(zhuǎn)化為求即可.【小問1詳解】證明:因?yàn)?,面,面,所以面,同理面,又因?yàn)槊?所以面面.【小問2詳解】解:因?yàn)樵趫D①等腰梯形中,分別為的中點(diǎn),所以,在圖②多面體中,因?yàn)椋?,,所以?因?yàn)?,面面,面,面?所以面,又因?yàn)槊?,所以,在直角三角形中,因?yàn)?所以,同理,,所以,則,有,所以.所以四棱錐的體積為2.22、(1);(2)過定點(diǎn),坐標(biāo)為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版體育場(chǎng)館物業(yè)服務(wù)合同范本實(shí)施細(xì)則3篇
- 專屬2024版中央空調(diào)購(gòu)銷合同書版B版
- 2025年度瓷磚品牌授權(quán)代理合同范本3篇
- 2025年智能溫室大棚建設(shè)與能源供應(yīng)服務(wù)合同4篇
- 2025年度退休返聘員工勞動(dòng)合同范本匯編3篇
- 未來教育科技企業(yè)營(yíng)銷戰(zhàn)略探索
- 疾病防范認(rèn)識(shí)尿毒癥及其早期預(yù)警信號(hào)
- 科技與天文學(xué)的融合未來趨勢(shì)與挑戰(zhàn)
- 盆栽種植技巧與節(jié)約生活
- 2025版投資型公寓租賃合同示范文本4篇
- 安徽省淮南四中2025屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 保險(xiǎn)專題課件教學(xué)課件
- 牛津上海版小學(xué)英語一年級(jí)上冊(cè)同步練習(xí)試題(全冊(cè))
- 室上性心動(dòng)過速-醫(yī)學(xué)課件
- 建設(shè)工程法規(guī)及相關(guān)知識(shí)試題附答案
- 中小學(xué)心理健康教育課程標(biāo)準(zhǔn)
- 四年級(jí)上冊(cè)脫式計(jì)算400題及答案
- 新課標(biāo)人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)集體備課教學(xué)案全冊(cè)表格式
- 人教精通版三年級(jí)英語上冊(cè)各單元知識(shí)點(diǎn)匯總
- 教案:第三章 公共管理職能(《公共管理學(xué)》課程)
- 諾和關(guān)懷俱樂部對(duì)外介紹
評(píng)論
0/150
提交評(píng)論