




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆內(nèi)蒙古烏蘭察布市集寧區(qū)集寧一中高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓=1的離心率為,則k的值為()A.4 B.C.4或 D.4或2.第屆全運會于年月在陜西西安順利舉辦,其中水上項目在西安奧體中心游泳跳水館進行,為了應(yīng)對比賽,大會組委會將對泳池進行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費用為元,設(shè)入水處的較短池壁長度為,且據(jù)估計較短的池壁維修費用與池壁長度成正比,且比例系數(shù)為,較長的池壁維修費用滿足代數(shù)式,則當泳池的維修費用最低時值為()A. B.C. D.3.設(shè)函數(shù),則曲線在點處的切線方程為()A. B.C. D.4.已知等比數(shù)列滿足,則q=()A.1 B.-1C.3 D.-35.已知空間四邊形,其對角線、,、分別是邊、的中點,點在線段上,且使,用向量,表示向量是A. B.C. D.6.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機編號,則抽取的42人中,編號落入?yún)^(qū)間[481,720]的人數(shù)為A.11 B.12C.13 D.147.已知拋物線的焦點為F,直線l經(jīng)過點F交拋物線C于A,B兩點,交拋物淺C的準線于點P,若,則為()A.2 B.3C.4 D.68.已知空間、、、四點共面,且其中任意三點均不共線,設(shè)為空間中任意一點,若,則()A.2 B.C.1 D.9.雙曲線C:的右焦點為F,過點F作雙曲線C的兩條漸近線的垂線,垂足分別為H1,H2.若,則雙曲線C的離心率為()A. B.C. D.210.若橢圓的右焦點與拋物線的焦點重合,則橢圓的離心率為()A. B.C. D.11.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則12.若函數(shù)的導函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線被圓截得的弦長等于該圓的半徑,則實數(shù)_____.14.如圖,莖葉圖所示數(shù)據(jù)平均分為91,則數(shù)字x應(yīng)該是__________15.若,m,三個數(shù)成等差數(shù)列,則圓錐曲線的離心率為______16.如圖,圖形中的圓是正方形的內(nèi)切圓,點E,F(xiàn),G,H為對角線與圓的交點,若向正方形內(nèi)隨機投入一點,則該點落在陰影部分區(qū)域內(nèi)的概率為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:,右焦點為F(,0),且離心率為(1)求橢圓C的標準方程;(2)設(shè)M,N是橢圓C上不同的兩點,且直線MN與圓O:相切,若T為弦MN的中點,求|OT||MN|的取值范圍18.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A,C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側(cè)面不計剪裁和拼接損耗,設(shè)矩形的邊長|AB|xm,圓柱的體積為Vm3.(1)寫出體積V關(guān)于x的函數(shù)關(guān)系式,并指出定義域;(2)當x為何值時,才能使做出的圓柱形罐子的體積V最大最大體積是多少?19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,當時,恒成立,求實數(shù)的取值范圍.20.(12分)在①;②;③;這三個條件中任選一個,補充在下面的問題中,然后解答補充完整的題.注:若選擇多個條件分別解答,則按第一個解答計分.已知,且(只需填序號).(1)求的值;(2)求展開式中的奇數(shù)次冪的項的系數(shù)之和21.(12分)求滿足下列條件的圓錐曲線方程的標準方程.(1)經(jīng)過點,兩點的橢圓;(2)與雙曲線-=1有相同的漸近線且經(jīng)過點的雙曲線.22.(10分)如圖,在正方體中,是棱的中點.(1)試判斷直線與平面的位置關(guān)系,并說明理由;(2)求證:直線面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)焦點所在坐標軸進行分類討論,由此求得的值.【詳解】當焦點在軸上時,,且.當焦點在軸上時,且.故選:C2、A【解析】根據(jù)題意得到泳池維修費用的的解析式,再利用導數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費用為元,則由題意得,則,令,解得,當時,;當時,,故當時,有最小值因此,當較短池壁為時,泳池的總維修費用最低故選A3、A【解析】利用導數(shù)的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A4、C【解析】根據(jù)已知條件,利用等比數(shù)列的基本量列出方程,即可求得結(jié)果.【詳解】因為,故可得;解得.故選:C.5、C【解析】根據(jù)所給的圖形和一組基底,從起點出發(fā),把不是基底中的向量,用是基底的向量來表示,就可以得到結(jié)論【詳解】解:故選:【點睛】本題考查向量的基本定理及其意義,解題時注意方法,即從要表示的向量的起點出發(fā),沿著空間圖形的棱走到終點,若出現(xiàn)不是基底中的向量的情況,再重復這個過程,屬于基礎(chǔ)題6、B【解析】使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人∴從編號1~480的人中,恰好抽取480/20=24人,接著從編號481~720共240人中抽取240/20=12人考點:系統(tǒng)抽樣7、C【解析】由題意可知設(shè),由可得,可求得,,根據(jù)模長公式計算即可得出結(jié)果.【詳解】由題意可知,準線方程為,設(shè),可知,,解得:,代入到拋物線方程可得:.,故選:C8、B【解析】根據(jù)空間四點共面的充要條件代入即可解決.【詳解】,即整理得由、、、四點共面,且其中任意三點均不共線,可得,解之得故選:B9、D【解析】將條件轉(zhuǎn)化為該雙曲線的一條漸近線的傾斜角為,可得,由離心率公式即可得解.【詳解】由題意,(為坐標原點),所以該雙曲線的一條漸近線的傾斜角為,所以,即,所以離心率.故選:D.10、B【解析】求出拋物線的焦點坐標,可得出的值,進而可求得橢圓的離心率.【詳解】拋物線的焦點坐標為,由已知可得,可得,因此,該橢圓的離心率為.故選:B.11、B【解析】根據(jù)線線,線面,面面位置關(guān)系的判定方法即可逐項判斷.【詳解】A:若,,則或a,故A錯誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯誤;D:若,,,則不能判斷α與β是否垂直,故D錯誤.故選:B.12、A【解析】根據(jù)導數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點處的切線斜率隨增大而減小,滿足要求的只有A故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2或-4【解析】求出圓心到直線的距離,由幾何法表示出弦長,列出等量關(guān)系,即可求出結(jié)果.【詳解】由得,所以圓的圓心為,半徑,圓心到直線的距離,則由題可得,即,解得或.故答案為:2或.14、1【解析】結(jié)合莖葉圖以及平均數(shù)列出方程,即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:1.15、【解析】由等差中項的性質(zhì)求參數(shù)m,即可得曲線標準方程,進而求其離心率.【詳解】由題意,,可得,所以圓錐曲線為,則,,故.故答案為:.16、【解析】利用幾何概型概率計算公式,計算得所求概率.【詳解】設(shè)正方形的邊長為2,則陰影部分的面積為,故若向正方形內(nèi)隨機投入一點,則該點落在陰影部分區(qū)域內(nèi)概率為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)[,3].【解析】(1)由題可得,即求;(2)當直線的斜率不存在或為0,易求,當直線MN斜率存在且不為0時,設(shè)直線MN的方程為:,利用直線與圓相切可得,再聯(lián)立橢圓方程并應(yīng)用韋達定理求得,然后利用基本不等式即得.【小問1詳解】由題可得,∴??=2,??=∴橢圓C的方程為:;小問2詳解】當直線MN斜率為0時,不妨取直線MN為??=,則,此時,則;當直線MN斜率不存在,不妨取直線MN為x=,則,此時,則;當直線MN斜率存在且不為0時,設(shè)直線MN的方程為:,,因為直線MN與圓相切,所以,即,又因為直線MN與橢圓C交于M,N兩點:由,得,則,所以MN中點T坐標為,則,,所以又,當且僅當,即取等號,∴|OT||MN|;綜上所述:|OT|?|MN|的取值范圍為[,3].18、(1),;(2)時,最大值為m3.【解析】(1)連接,在中,由,利用勾股定理可得,設(shè)圓柱底面半徑為,求出.利用(其中即可得出;(2)利用導數(shù),求出V的單調(diào)性,即可得出結(jié)論【小問1詳解】連接,在中,,,設(shè)圓柱底面半徑為,則,即,,其中【小問2詳解】由及,得,列表如下:,0↗極大值↘∴當時,有極大值,也是最大值為m319、(1)答案見解析;(2).【解析】(1)求得,分、兩種情況討論,分析導數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)利用參變量分離法可得出對任意的恒成立,構(gòu)造函數(shù),其中,利用導數(shù)求出函數(shù)在上的最小值,由此可求得實數(shù)的取值范圍.【小問1詳解】解:函數(shù)的定義域為,.因為,由,可得.①當時,由可得,由可得.此時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;②當時,由可得,由可得,此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上所述,當時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當時,函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】解:當且時,由,可得,令,其中,.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,則,.20、(1)選①②③,答案均為;(2)66【解析】(1)選①時,利用二項式定理求得的通項公式為,從而得到,求出n的值;選②時,利用二項式系數(shù)和的公式求出,解出n的值;選③時,利用賦值法求解,,從而求出n的值;(2)在第一問求出的的前提下進行賦值法求解.【小問1詳解】選①,其中,而的通項公式為,當時,,所以,解得:;選②,由于,所以,解得:;選③,令中得:,再令得:,解得:;【小問2詳解】由(1)知:n=7,所以,令得:,令得:,兩式相減得:,所以,故展開式中的奇數(shù)次冪的項的系數(shù)和為66.21、(1);(2)【解析】(1)由題意可得,,從而可求出橢圓的標準方程,(2)由題意設(shè)雙曲線的共漸近線方程為,再將的坐標代入方程可求出的值,從而可求出雙曲線方程【小問1詳解】因為,所以P、Q分別是橢圓長軸和短軸上的端點,且橢圓的焦點在x軸上,所以,所以橢圓的標準方程為.【小問2詳解】設(shè)與雙曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年計算機考試復習素材試題及答案
- 2024年計算機基礎(chǔ)考試重要考點的試題及答案
- 公共事業(yè)管理學科知識問答試題及答案
- 直擊語文考試的難點試題及答案
- 獨特角度學習古代文學史試題及答案
- 論文學史上的女性形象試題及答案
- 小學六年級語文考場技巧題及答案
- 小自考視覺傳播設(shè)計關(guān)鍵知識及答案
- 拿下美容師資格證的考試題目及答案
- 教練班鋼管考試題及答案
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計規(guī)范
- (2024年)橋梁施工質(zhì)量控制要點
- NB-T 47013.15-2021 承壓設(shè)備無損檢測 第15部分:相控陣超聲檢測
- 煤制甲醇工藝設(shè)計
- 經(jīng)驗萃取技術(shù)的實戰(zhàn)性應(yīng)用課件
- 最新《易栓癥》課件
- 生產(chǎn)經(jīng)理轉(zhuǎn)正述職報告課件
- 空調(diào)清洗施工方案
- 《錢的旅行》課堂 課件
- 《數(shù)據(jù)庫驗收規(guī)定》word版
評論
0/150
提交評論