版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北京市海淀區(qū)知春里中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的3倍,再向右平移個(gè)單位,得到的函數(shù)的一個(gè)對稱中心是A. B.C. D.2.直線l的方程為Ax+By+C=0,當(dāng),時(shí),直線l必經(jīng)過A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限3.設(shè)且則A. B.C. D.4.已知正方體的個(gè)頂點(diǎn)中,有個(gè)為一側(cè)面是等邊三角形的正三棱錐的頂點(diǎn),則這個(gè)正三棱錐與正方體的全面積之比為A. B.C. D.5.函數(shù)的零點(diǎn)一定位于區(qū)間()A. B.C. D.6.已知a=log23+log2,b=log29-log2,c=log32,則a,b,c的大小關(guān)系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c7.如果且,則等于A.2016 B.2017C.1009 D.20188.如圖的曲線就像橫放的葫蘆的軸截面的邊緣線,我們叫葫蘆曲線(也像湖面上高低起伏的小島在水中的倒影與自身形成的圖形,也可以形象地稱它為倒影曲線),它對應(yīng)的方程為(其中記為不超過的最大整數(shù)),且過點(diǎn),若葫蘆曲線上一點(diǎn)到軸的距離為,則點(diǎn)到軸的距離為()A. B.C. D.9.要得到函數(shù)f(x)=cos(2x-)的圖象,只需將函數(shù)g(x)=cos2x的圖象()A.向左平移個(gè)單位長度 B.向右平移個(gè)單位長度C.向左平移單位長度 D.向右平移個(gè)單位長度10.若存在正數(shù)x使成立,則a的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),又有定義在R上函數(shù)滿足:(1),,均恒成立;(2)當(dāng)時(shí),,則_____,函數(shù)在區(qū)間中的所有零點(diǎn)之和為_______.12.對于定義在上的函數(shù),如果存在區(qū)間,同時(shí)滿足下列兩個(gè)條件:①在區(qū)間上是單調(diào)遞增的;②當(dāng)時(shí),函數(shù)的值域也是,則稱是函數(shù)的一個(gè)“遞增黃金區(qū)間”.下列函數(shù)中存在“遞增黃金區(qū)間”的是:___________.(填寫正確函數(shù)的序號)①;②;③;④.13.已知扇形的圓心角為,其弧長是其半徑的2倍,則__________14.已知函數(shù)f(x)=x2,若存在t∈R,對任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,則m的最大值為______15.不等式tanx+16.設(shè)是定義在上的函數(shù),若存在兩個(gè)不等實(shí)數(shù),使得,則稱函數(shù)具有性質(zhì),那么下列函數(shù):①;②;③;具有性質(zhì)的函數(shù)的個(gè)數(shù)為____________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.英國數(shù)學(xué)家泰勒發(fā)現(xiàn)了如下公式:,其中,此公式有廣泛的用途,例如利用公式得到一些不等式:當(dāng)時(shí),,.(1)證明:當(dāng)時(shí),;(2)設(shè),若區(qū)間滿足當(dāng)定義域?yàn)闀r(shí),值域也為,則稱為的“和諧區(qū)間”.(i)時(shí),是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由;(ii)時(shí),是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由.18.如圖,正三棱柱的底面邊長為3,側(cè)棱,D是CB延長線上一點(diǎn),且求二面角的正切值;求三棱錐的體積19.已知函數(shù).(1)求函數(shù)的最小正周期及函數(shù)的對稱軸方程;(2)若,求函數(shù)的單調(diào)區(qū)間和值域.20.我們知道:設(shè)函數(shù)的定義域?yàn)?,那么“函?shù)的圖象關(guān)于原點(diǎn)成中心對稱圖形”的充要條件是“,”.有同學(xué)發(fā)現(xiàn)可以將其推廣為:設(shè)函數(shù)的定義域?yàn)?,那么“函?shù)的圖象關(guān)于點(diǎn)成中心對稱圖形”的充要條件是“,”.(1)判斷函數(shù)的奇偶性,并證明;(2)判斷函數(shù)的圖象是否為中心對稱圖形,若是,求出其對稱中心坐標(biāo);若不是,說明理由.21.已知集合,(1)當(dāng),求;(2)若,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】由函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的3倍得到,向右平移個(gè)單位得到,將代入得,所以函數(shù)的一個(gè)對稱中心是,故選A2、A【解析】把直線方程化為斜截式,根據(jù)斜率以及直線在y軸上的截距的符號,判斷直線在坐標(biāo)系中的位置【詳解】當(dāng)A>0,B<0,C>0時(shí),直線Ax+By+C=0,即y=﹣x﹣,故直線的斜率﹣>0,且直線在y軸上的截距﹣>0,故直線經(jīng)過第一、二、三象限,故選A【點(diǎn)睛】本題主要考查根據(jù)直線的斜截式方程判斷直線在坐標(biāo)系中的位置,屬于基礎(chǔ)題3、C【解析】由已知得,,去分母得,,所以,又因?yàn)?,,所以,即,選考點(diǎn):同角間的三角函數(shù)關(guān)系,兩角和與差的正弦公式4、A【解析】所求的全面積之比為:,故選A.5、C【解析】根據(jù)零點(diǎn)存在性定理,若在區(qū)間有零點(diǎn),則,逐一檢驗(yàn)選項(xiàng),即可得答案.【詳解】由題意得為連續(xù)函數(shù),且在單調(diào)遞增,,,,根據(jù)零點(diǎn)存在性定理,,所以零點(diǎn)一定位于區(qū)間.故選:C6、B【解析】利用對數(shù)的運(yùn)算性質(zhì)求出a、b、c的范圍,即可得到正確答案.【詳解】因?yàn)閍=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故選:B7、D【解析】∵f(x)滿足對任意的實(shí)數(shù)a,b都有f(a+b)=f(a)?f(b),∴令b=1得,f(a+1)=f(a)?f(1),∴,所以,共1009項(xiàng),所以.故選D.8、C【解析】先根據(jù)點(diǎn)在曲線上求出,然后根據(jù)即可求得的值【詳解】點(diǎn)在曲線上,可得:化簡可得:可得:()解得:()若葫蘆曲線上一點(diǎn)到軸的距離為,則等價(jià)于則有:可得:故選:C9、D【解析】利用函數(shù)的圖象變換規(guī)律即可得解.【詳解】解:,只需將函數(shù)圖象向右平移個(gè)單位長度即可故選.【點(diǎn)睛】本題主要考查函數(shù)圖象變換規(guī)律,屬于基礎(chǔ)題10、D【解析】根據(jù)題意,分析可得,設(shè),利用函數(shù)的單調(diào)性與最值,即可求解,得到答案【詳解】根據(jù)題意,,設(shè),由基本初等函數(shù)的性質(zhì),得則函數(shù)在R上為增函數(shù),且,則在上,恒成立;若存在正數(shù)x使成立,即有正實(shí)數(shù)解,必有;即a的取值范圍為;故選D【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的應(yīng)用,以及不等式的有解問題,其中解答中合理把不等式的有解問題轉(zhuǎn)化為函數(shù)的單調(diào)性與最值問題是解答的關(guān)鍵,著重考查分析問題和解答問題的能力,屬于中檔試題二、填空題:本大題共6小題,每小題5分,共30分。11、①.1②.42【解析】求出的周期和對稱軸,再結(jié)合圖象即可.【詳解】由條件可知函數(shù)的圖象關(guān)于對稱軸對稱,由可知,,則周期,即,函數(shù)在區(qū)間中的所有零點(diǎn)之和即為函數(shù)與函數(shù)圖象的交點(diǎn)的橫坐標(biāo)之和,當(dāng)時(shí),為單調(diào)遞增函數(shù),,,且區(qū)間關(guān)于對稱,又∵由已知得也是的對稱軸,∴只需用研究直線左側(cè)部分即可,由圖象可知左側(cè)有7個(gè)交點(diǎn),則右側(cè)也有7個(gè)交點(diǎn),將這14個(gè)交點(diǎn)的橫坐標(biāo)從小到大排列,第個(gè)數(shù)記為,由對稱性可知,則,同理,…,,∴.故答案為:,.12、②③【解析】由條件可得方程有兩個(gè)實(shí)數(shù)解,然后逐一判斷即可.【詳解】∵在上單調(diào)遞增,由條件②可知,即方程有兩個(gè)實(shí)數(shù)解;∵x+1=x無實(shí)數(shù)解,∴①不存在“遞增黃金區(qū)間”;∵的兩根為:1和2,不難驗(yàn)證區(qū)間[1,2]是函數(shù)的一個(gè)“遞增黃金區(qū)間”;在同一坐標(biāo)系中畫出與的圖象如下:由圖可得方程有兩個(gè)根,∴③也存在“遞增黃金區(qū)間”;在同一坐標(biāo)系中畫出與的圖象如下:所以沒有實(shí)根,∴④不存在.故答案為:②③.13、-1【解析】由已知得,所以則,故答案.14、5【解析】設(shè)g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.從而得到g(1)≤0且g(m)≤0,求得t的范圍,討論t的最值,代入m的不等式求得m的范圍,結(jié)合條件可得m的最大值【詳解】函數(shù)f(x)=x2,那么f(x+t)=x2+2tx+t2,對任意實(shí)數(shù)x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,從而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0當(dāng)時(shí),;當(dāng)時(shí),綜上可得,由m為正整數(shù),可得m的最大值為5故答案為5【點(diǎn)睛】本題考查不等式恒成立問題解法,注意運(yùn)用二次函數(shù)的性質(zhì),考查運(yùn)算求解能力,是中檔題15、kπ,π4【解析】根據(jù)正切函數(shù)性質(zhì)求解、【詳解】由正切函數(shù)性質(zhì),由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案為:[kπ,kπ+π416、【解析】根據(jù)題意,找出存在的點(diǎn),如果找不出則需證明:不存在,,使得【詳解】①因?yàn)楹瘮?shù)是奇函數(shù),可找關(guān)于原點(diǎn)對稱的點(diǎn),比如,存在;②假設(shè)存在不相等,,使得,即,得,矛盾,故不存在;③函數(shù)為偶函數(shù),,令,,則,存在故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:證明存在性命題,只需找到滿足條件的特殊值即可,反之需要證明不存在,一般考慮反證法,先假設(shè)存在,推出矛盾即可,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(i)不存在“和諧區(qū)間”,理由見解析(ii)存在,有唯一的“和諧區(qū)間”【解析】(1)利用來證得結(jié)論成立.(2)(i)通過證明方程只有一個(gè)實(shí)根來判斷出此時(shí)不存在“和諧區(qū)間”.(ii)對的取值進(jìn)行分類討論,結(jié)合的單調(diào)性以及(1)的結(jié)論求得唯一的“和諧區(qū)間”.【小問1詳解】由已知當(dāng)時(shí),,得,所以當(dāng)時(shí),.【小問2詳解】(i)時(shí),假設(shè)存在,則由知,注意到,故,所以在單調(diào)遞增,于是,即是方程的兩個(gè)不等實(shí)根,易知不是方程的根,由已知,當(dāng)時(shí),,令,則有時(shí),,即,故方程只有一個(gè)實(shí)根0,故不存在“和諧區(qū)間”.(ii)時(shí),假設(shè)存在,則由知若,則由,知,與值域是矛盾,故不存在“和諧區(qū)間”,同理,時(shí),也不存在,下面討論,若,則,故最小值為,于是,所以,所以最大值為2,故,此時(shí)的定義域?yàn)椋涤驗(yàn)?,符合題意.若,當(dāng)時(shí),同理可得,舍去,當(dāng)時(shí),在上單調(diào)遞減,所以,于是,若即,則,故,與矛盾;若,同理,矛盾,所以,即,由(1)知當(dāng)時(shí),,因?yàn)椋?,從而,,從而,矛盾,綜上所述,有唯一的“和諧區(qū)間”.【點(diǎn)睛】對于“新定義”的題目,關(guān)鍵是要運(yùn)用新定義的知識以及原有的數(shù)學(xué)知識來進(jìn)行求解.本題有兩個(gè)“新定義”,一個(gè)是泰勒發(fā)現(xiàn)的公式,另一個(gè)是“和諧區(qū)間”.泰勒發(fā)現(xiàn)的公式可以直接用于證明,“和諧區(qū)間”可轉(zhuǎn)化為函數(shù)的單調(diào)性來求解.18、(1)2(2)【解析】取BC中點(diǎn)O,中點(diǎn)E,連結(jié)OE,OA,以O(shè)為原點(diǎn),OD為x軸,OE為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的正切值三棱錐的體積,由此能求出結(jié)果【詳解】取BC中點(diǎn)O,中點(diǎn)E,連結(jié)OE,OA,由正三棱柱的底面邊長為3,側(cè)棱,D是CB延長線上一點(diǎn),且以O(shè)為原點(diǎn),OD為x軸,OE為y軸,OA為z軸,建立空間直角坐標(biāo)系,則3,,0,,0,,0,,所以0,,3,,其中平面ABD的法向量1,,設(shè)平面的法向量y,,則,取,得1,,設(shè)二面角的平面角為,則,則,則,所以二面角的正切值為2由(1)可得平面,所以是三棱錐的高,且,所以三棱錐的體積:【點(diǎn)睛】本題主要考查了二面角的求解,及空間幾何體的體積的計(jì)算,其中解答中根據(jù)幾何體的結(jié)構(gòu)特征,建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用向量的夾角公式求解二面角問題是求解空間角的常用方法,同時(shí)注意“等體積法”在求解三棱錐體積中的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題19、(1)最小正周期為,對稱軸方程為(2)函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;值域?yàn)椤窘馕觥浚?)先通過降冪公式化簡成,再按照周期和對稱軸方程進(jìn)行求解;(2)求出整體的范圍,再結(jié)合正弦函數(shù)的單調(diào)性求解單調(diào)區(qū)間和值域.【小問1詳解】;函數(shù)的最小正周期為,函數(shù)的對稱軸方程為;【小問2詳解】,,時(shí),函數(shù)單調(diào)遞減,即時(shí),函數(shù)在上單調(diào)遞減;時(shí),函數(shù)在單調(diào)遞增,即時(shí),函數(shù)在上單調(diào)遞增.,函數(shù)的值域?yàn)?20、(1)函數(shù)為奇函數(shù),證明見解析(2)是中心對稱圖形,對稱中心坐標(biāo)為【解析】(1)根據(jù)奇函數(shù)的定義,即可證明結(jié)果;(2)根據(jù)題意,由函數(shù)的解析式可得,即可得結(jié)論【小問1詳解】解:函數(shù)為奇函數(shù)證明如下:函數(shù)的定義域?yàn)镽,關(guān)于原
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版南京大學(xué)與京東集團(tuán)電商人才培養(yǎng)合作合同4篇
- 2025年度鋼管行業(yè)市場調(diào)研與分析服務(wù)合同
- 二零二五年度企業(yè)廢棄包裝物清運(yùn)合同模板
- 二零二五年度農(nóng)莊農(nóng)業(yè)保險(xiǎn)合同模板
- 2025年度農(nóng)業(yè)科技創(chuàng)新實(shí)驗(yàn)基地租賃合同范本3篇
- 二零二五版內(nèi)參內(nèi)容策劃與制作合同4篇
- 2025年度個(gè)人反擔(dān)保合同模板(保險(xiǎn)業(yè)務(wù)風(fēng)險(xiǎn)防范)
- 二零二五年度泥水工施工技術(shù)創(chuàng)新與推廣合同4篇
- 二零二五年度現(xiàn)代農(nóng)業(yè)科技項(xiàng)目質(zhì)押擔(dān)保合同3篇
- 二零二五年度瓷磚電商平臺銷售代理合同2篇
- 液化氣站其他危險(xiǎn)和有害因素辨識及分析
- 建筑工程施工安全管理思路及措施
- 高中語文教學(xué)課例《勸學(xué)》課程思政核心素養(yǎng)教學(xué)設(shè)計(jì)及總結(jié)反思
- 中國農(nóng)業(yè)銀行小微企業(yè)信貸業(yè)務(wù)貸后管理辦法規(guī)定
- 領(lǐng)導(dǎo)干部的情緒管理教學(xué)課件
- 初中英語-Unit2 My dream job(writing)教學(xué)課件設(shè)計(jì)
- 市政道路建設(shè)工程竣工驗(yàn)收質(zhì)量自評報(bào)告
- 優(yōu)秀支行行長推薦材料
- 中國版梅尼埃病診斷指南解讀
- 暨南大學(xué)《經(jīng)濟(jì)學(xué)》考博歷年真題詳解(宏觀經(jīng)濟(jì)學(xué)部分)
- 藥店員工教育培訓(xùn)資料
評論
0/150
提交評論