2025屆湖北省荊州市成豐學(xué)校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2025屆湖北省荊州市成豐學(xué)校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2025屆湖北省荊州市成豐學(xué)校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2025屆湖北省荊州市成豐學(xué)校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2025屆湖北省荊州市成豐學(xué)校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆湖北省荊州市成豐學(xué)校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)在拋物線的準(zhǔn)線上,則該拋物線的焦點(diǎn)坐標(biāo)是()A. B.C. D.2.已知拋物線的焦點(diǎn)為F,點(diǎn)A在拋物線上,直線FA與拋物線的準(zhǔn)線交于點(diǎn)M,O為坐標(biāo)原點(diǎn).若,且,則()A.1 B.2C.3 D.43.直線的傾斜角為()A.60° B.30°C.120° D.150°4.已知命題:,;命題:,.則下列命題中為真命題的是()A. B.C. D.5.等差數(shù)列x,,,…的第四項(xiàng)為()A.5 B.6C.7 D.86.圓心為的圓,在直線x﹣y﹣1=0上截得的弦長為,那么,這個圓的方程為()A. B.C. D.7.經(jīng)過直線與直線的交點(diǎn),且平行于直線的直線方程為()A. B.C. D.8.長方體中,,,,為側(cè)面內(nèi)(含邊界)的動點(diǎn),且滿足,則四棱錐體積的最小值為()A. B.C. D.9.在區(qū)間上隨機(jī)取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.10.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.等差數(shù)列中,若,則()A.42 B.45C.48 D.5112.元朝著名的數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩:“我有一壺酒,攜著游春走.遇店添一倍,逢友飲一斗.”基于此情景,設(shè)計(jì)了如圖所示的程序框圖,若輸入的,輸出的,則判斷框中可以填()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布(),若ξ在內(nèi)取值的概率為0.4,則ξ在內(nèi)取值的概率為______14.方程表示雙曲線,則實(shí)數(shù)k的取值范圍是___________.15.已知曲線表示焦點(diǎn)在軸上的雙曲線,則符合條件的的一個整數(shù)值為______.16.將邊長為2的正方形繞其一邊所在的直線旋轉(zhuǎn)一周,所得的圓柱體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,過點(diǎn)且傾斜角為的直線與曲線(為參數(shù))交于兩點(diǎn).(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求長.18.(12分)已知橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點(diǎn),線段AB過點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),,求19.(12分)在三棱錐A—BCD中,已知CB=CD=,BD=2,O為BD的中點(diǎn),AO⊥平面BCD,AO=2,E為AC的中點(diǎn)(1)求直線AB與DE所成角的余弦值;(2)若點(diǎn)F在BC上,滿足BF=BC,設(shè)二面角F—DE—C的大小為θ,求sinθ的值20.(12分)已知數(shù)列的前項(xiàng)和為,若.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)已知拋物線C:經(jīng)過點(diǎn)(1,-1).(1)求拋物線C的方程及其焦點(diǎn)坐標(biāo);(2)過拋物線C上一動點(diǎn)P作圓M:的一條切線,切點(diǎn)為A,求切線長|PA|的最小值.22.(10分)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng);(Ⅱ)求數(shù)列的前n項(xiàng)和Sn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】首先表示出拋物線的準(zhǔn)線,根據(jù)點(diǎn)在拋物線的準(zhǔn)線上,即可求出參數(shù),即可求出拋物線的焦點(diǎn).【詳解】解:拋物線的準(zhǔn)線為因?yàn)樵趻佄锞€的準(zhǔn)線上故其焦點(diǎn)為故選:【點(diǎn)睛】本題考查拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題.2、D【解析】設(shè),由和在拋物線上,求出和,利用求出p.【詳解】過A作AP垂直x軸與P.拋物線的焦點(diǎn)為,準(zhǔn)線方程為.設(shè),因?yàn)?,所以,解得?因?yàn)樵趻佄锞€上,則.所以,即,解得:.故選:D3、C【解析】求出斜率,根據(jù)斜率與傾斜角的關(guān)系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.4、C【解析】利用基本不等式判斷命題的真假,由不等式性質(zhì)判斷命題的真假,進(jìn)而確定它們所構(gòu)成的復(fù)合命題的真假即可.【詳解】由,當(dāng)且僅當(dāng)時等號成立,故不存在使,所以命題為假命題,而命題為真命題,則為真,為假,故為假,為假,為真,為假.故選:C5、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項(xiàng).【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項(xiàng)為-1+(4-1)×2=5.故選:A.6、A【解析】由垂徑定理,根據(jù)弦長的一半及圓心到直線的距離求出圓半徑,即可寫出圓的標(biāo)準(zhǔn)方程.【詳解】圓心到直線x﹣y﹣1=0的距離弦長,設(shè)圓半徑為r,則故r=2則圓的標(biāo)準(zhǔn)方程為故選:A【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系和圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.7、B【解析】求出兩直線的交點(diǎn)坐標(biāo),可設(shè)所求直線的方程為,將交點(diǎn)坐標(biāo)代入求得,即可的解.【詳解】解:由,解得,即兩直線的交點(diǎn)坐標(biāo)為,設(shè)所求直線的方程為,則有,解得,所以所求直線方程為,即.故選:B.8、D【解析】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,分析可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn)的橢圓,求出橢圓的方程,可知當(dāng)點(diǎn)為橢圓與棱或的交點(diǎn)時,點(diǎn)到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,設(shè)點(diǎn),其中,,則、,因?yàn)槠矫妫矫妫瑒t,所以,,同理可得,所以,,所以點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且長軸長為的橢圓的一部分,則,,,所以,點(diǎn)的軌跡方程為,點(diǎn)到平面的距離為,當(dāng)點(diǎn)為曲線與棱或棱的交點(diǎn)時,點(diǎn)到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.9、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D10、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當(dāng)時,利用正弦函數(shù)的單調(diào)性知;當(dāng)時,或.綜上可知“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.11、C【解析】結(jié)合等差數(shù)列的性質(zhì)求得正確答案.【詳解】依題意是等差數(shù)列,,.故選:C12、D【解析】根據(jù)程序框圖的算法功能,模擬程序運(yùn)行即可推理判斷作答.【詳解】由程序框圖知,直到型循環(huán)結(jié)構(gòu),先執(zhí)行循環(huán)體,條件不滿足,繼續(xù)執(zhí)行循環(huán)體,條件滿足跳出循環(huán)體,則有:當(dāng)?shù)谝淮螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當(dāng)?shù)诙螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當(dāng)?shù)谌螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當(dāng)?shù)谒拇螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當(dāng)?shù)谖宕螆?zhí)行循環(huán)體時,,,條件滿足,跳出循環(huán)體,輸出,于是得判斷框中的條件為:,所以判斷框中可以填:.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、4##【解析】根據(jù)正態(tài)分布曲線的對稱性求解【詳解】因?yàn)棣畏恼龖B(tài)分布(),即正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,可知ξ在與取值的概率相同,所以ξ在內(nèi)取值的概率為0.4.故答案為:0.414、【解析】由題可得,即求.【詳解】∵方程表示雙曲線,∴,∴.故答案為:.15、.(答案不唯一)【解析】給出一個符合條件的值即可.【詳解】當(dāng)時,曲線表示焦點(diǎn)在軸上的雙曲線,故答案為:.(答案不唯一)16、【解析】依題意可得圓柱的底面半徑、高,再根據(jù)圓柱的體積公式計(jì)算可得;【詳解】解:依題意可得圓柱的底面半徑,高,所以;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因?yàn)榍€(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.18、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長,求出直線方程,解出點(diǎn)的坐標(biāo)即可得解.【詳解】(1)橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點(diǎn),線段AB過點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當(dāng)時,線段中點(diǎn)坐標(biāo),中垂線方程:,;當(dāng)時,線段中點(diǎn)坐標(biāo),中垂線方程:,,綜上所述:.19、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量數(shù)量積求直線向量夾角,即得結(jié)果;(2)先求兩個平面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.【詳解】(1)連以為軸建立空間直角坐標(biāo)系,則從而直線與所成角的余弦值為(2)設(shè)平面一個法向量為令設(shè)平面一個法向量為令因此【點(diǎn)睛】本題考查利用向量求線線角與二面角,考查基本分析求解能力,屬中檔題.20、(1)(2)【解析】(1)根據(jù)所給條件先求出首項(xiàng),然后仿寫,作差即可得到的通項(xiàng)公式;(2)根據(jù)(1)求出的通項(xiàng)公式,觀察是由一個等差數(shù)列加上一個等比數(shù)列得到,要求其前項(xiàng)和,采用分組求和法結(jié)合公式法可求出前項(xiàng)和【小問1詳解】當(dāng)時,,解得;當(dāng)時,,∴,化簡得,∴是首項(xiàng)為1,公比為2的等比數(shù)列,∴,因此的通項(xiàng)公式為.【小問2詳解】由(1)得,∴,∴,∴21、(1),焦點(diǎn)坐標(biāo)為;(2)【解析】(1)將點(diǎn)代入拋物線方程求解出的值,則拋物線方程和焦點(diǎn)坐標(biāo)可知;(2)設(shè)出點(diǎn)坐標(biāo),根據(jù)切線垂直于半徑,根據(jù)點(diǎn)到點(diǎn)距離公式表示出,然后結(jié)合二次函數(shù)的性質(zhì)求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論