版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆內(nèi)蒙古省北京八中烏蘭察布分校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,已知的頂點,,其內(nèi)切圓圓心在直線上,則頂點C的軌跡方程為()A. B.C. D.2.在平面直角坐標系中,雙曲線的右焦點為,過雙曲線上一點作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.3.一質(zhì)點的運動方程為(位移單位:m,時間單位:s),則該質(zhì)點在時的瞬時速度為()A.4 B.12C.15 D.214.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個位數(shù)字為葉).考慮以下結(jié)論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標準差小于乙地該月時的氣溫的標準差;④甲地該月時的氣溫的標準差大于乙地該月時的氣溫的標準差.其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為()A.①③ B.①④C.②③ D.②④5.已知實數(shù)a,b,c滿足,,則a,b,c的大小關(guān)系為()A. B.C. D.6.已知實數(shù),滿足不等式組,則的最小值為()A2 B.3C.4 D.57.在正項等比數(shù)列中,,,則()A27 B.64C.81 D.2568.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關(guān)系不確定9.已知直線與直線,若,則()A.6 B.C.2 D.10.如圖,已知,分別是橢圓的左、右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為()A. B.C. D.11.將正整數(shù)1,2,3,4,…按如圖所示的方式排成三角形數(shù)組,則第19行從左往右數(shù)第5個數(shù)是()A.381 B.361C.329 D.40012.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當(dāng)取最大值時的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“x≥1,x2-2x+4≥0”的否定為____________.14.已知,,,若,則______.15.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高二被抽取的人數(shù)為__.16.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E為棱BC上的點,且(1)求證:平面PAC;(2)求二面角A-PC-D的正弦值18.(12分)已知拋物線上的點到其焦點F的距離為5.(1)求C的方程;(2)過點的直線l交C于A,B兩點,且N為線段的中點,求直線l的方程.19.(12分)已知數(shù)列中,數(shù)列的前n項和為滿足.(1)證明:數(shù)列為等比數(shù)列;(2)在和中插入k個數(shù)構(gòu)成一個新數(shù)列:,2,,4,6,,8,10,12,,…,其中插入的所有數(shù)依次構(gòu)成首項和公差都為2的等差數(shù)列.求數(shù)列的前50項和.20.(12分)命題p:直線l:與圓C:有公共點,命題q:雙曲線的離心率(1)若p,q均為真命題,求實數(shù)m的取值范圍;(2)若為真,為假,求實數(shù)m的取值范圍21.(12分)過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2)(1)求圓C的標準方程;(2)直線l過B點與圓C相切,求直線l的方程,并化為一般式22.(10分)已知拋物線的準線與軸的交點為.(1)求的方程;(2)若過點的直線與拋物線交于,兩點.請判斷是否為定值,若是,求出該定值;若不是,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)圖可得:為定值,利用根據(jù)雙曲線定義,所求軌跡是以、為焦點,實軸長為6的雙曲線的右支,從而寫出其方程即得【詳解】解:如圖設(shè)與圓切點分別為、、,則有,,,所以根據(jù)雙曲線定義,所求軌跡是以、為焦點,實軸長為4的雙曲線的右支(右頂點除外),即、,又,所以,所以方程為故選:A2、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡得,解得(負值舍去).故選:A.3、B【解析】由瞬時變化率的定義,代入公式求解計算.【詳解】由題意,該質(zhì)點在時的瞬時速度為.故選:B4、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標準差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標準差為由莖葉圖知乙地該月時的平均氣溫為,標準差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標準差小于甲的標準差,故④正確,故正確的是①④,故選:B5、A【解析】利用對數(shù)的性質(zhì)可得,,再構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷,再構(gòu)造,利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,再由單調(diào)性即可求解.【詳解】由題意可得均大于,因為,所以,所以,且,令,,當(dāng)時,,所以在單調(diào)遞增,所以,所以,即,令,,當(dāng)時,,所以在上單調(diào)遞減,由,,所以,所以,綜上所述,.故選:A6、B【解析】畫出可行域,找到最優(yōu)解,得最值.【詳解】畫出不等式組對應(yīng)的可行域如下:平行移動直線,當(dāng)直線過點時,.故選:B.7、C【解析】根據(jù)等比數(shù)列的通項公式求出公比,進而求得答案.【詳解】設(shè)的公比為,則(負值舍去),所以.故選:C.8、C【解析】利用向量法判斷平面與平面的位置關(guān)系.【詳解】因為平面,的法向量分別為,,所以,即不垂直,則,不垂直,因為,即即不平行,則,不平行,所以,相交但不垂直,故選:C9、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為直線與直線,且,所以,解得;故選:A10、A【解析】由切線的性質(zhì),可得,,再結(jié)合橢圓定義,即得解【詳解】因為過點的直線圓的切線,,,所以由橢圓定義可得,可得橢圓的離心率故選:A11、C【解析】觀察規(guī)律可知,從第一行起,每一行最后一個數(shù)是連續(xù)的完全平方數(shù),據(jù)此容易得出答案.【詳解】由圖中數(shù)字排列規(guī)律可知:第1行從左往右最后1個數(shù)是,第2行從左往右最后1個數(shù)是,第3行從左往右最后1個數(shù)是,……第18行從左往右最后1個數(shù)為,第19行從左往右第5個數(shù)是故選:C.12、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設(shè)為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當(dāng)且僅當(dāng),即,時等號成立,此時故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)還有一個量詞的命題的否定的方法解答即可.【詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.14、【解析】根據(jù)題意,由向量坐標表示,列出方程,求出,,即可得出結(jié)果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標表示求參數(shù),屬于基礎(chǔ)題型.15、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數(shù).【詳解】高一年級抽取的人數(shù)為:人,則,則高二被抽取的人數(shù),故答案為:.16、【解析】建立空間直角坐標系后求相關(guān)的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標原點,所在直線為x,y,z軸,建立空間直角坐標系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】建立空間直角坐標系,計算出相關(guān)點的坐標,進而計算出相關(guān)向量的坐標;(1)計算向量的數(shù)量積,,根據(jù)數(shù)量積結(jié)果為零,證明線線垂直,進而證明線面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根據(jù)向量的夾角公式即可求解.【小問1詳解】證明:因為平面ABCD,平面ABCD,平面ABCD,所以,,又因為,則以A為坐標原點,分別以AB、AD、AP所在的直線為x、y、z軸建立空間直角坐標系,則,,,,,,,,,則,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小問2詳解】解:由(1)可知平面PAC,可作為平面PAC的法向量,設(shè)平面PCD的法向量,因為,所以,即,不妨設(shè),得,又由圖示知二面角為銳角,所以二面角的正弦值為18、(1)(2)【解析】(1)根據(jù)拋物線的定義可得,求得,即可得出答案;(2)設(shè),利用點差法求出直線l的斜率,再利用直線的點斜式方程即可得出答案.【小問1詳解】解:由拋物線定義可知:,解得:,∴C的方程為;【小問2詳解】解:設(shè),則,兩式作差得,∴直線l的斜率,∵為的中點,∴,∴,∴直線l的方程為,即(經(jīng)檢驗,所求直線符合條件).19、(1)證明見解析;(2)2735.【解析】(1)利用給定的遞推公式結(jié)合“當(dāng)時,”計算推理作答.(2)插入所有項構(gòu)成數(shù)列,,再確定數(shù)列的前50項中含有數(shù)列和的項數(shù)計算作答.【小問1詳解】依題意,,當(dāng)時,,兩式相減得:,則有,而,即,所以數(shù)列是以2為首項,2為公式的等比數(shù)列.【小問2詳解】由(1)知,,即,插入的所有項構(gòu)成數(shù)列,,數(shù)列中前插入數(shù)列的項數(shù)為:,而前插入數(shù)列的項數(shù)為45,因此,數(shù)列的前50項中包含數(shù)列前9項,數(shù)列前41項,所以.20、(1),;(2).【解析】(1)求出,成立的等價條件,即可求實數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當(dāng)真假時,求出的取值范圍,當(dāng)假真時,求出的取值范圍,然后取并集即可得答案【小問1詳解】若命題為真命題,則,解得:,若命題為真命題,則且,,解得,∴,均為真命題,實數(shù)的取值范圍是,;【小問2詳解】若為真,為假,則、一真一假;①當(dāng)真假時,即“”且“或”,則此時的取值范圍是;當(dāng)假真時,即“或”且“”,則此時的取值范圍是;綜上,的取值范圍是21、(1);(2)【解析】(1)設(shè)圓的標準方程為:,則分別代入原點和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,則分別討論斜率存在與否,運用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設(shè)圓C的標準方程為,則分別代入原點和,得到,解得則圓的標準方程為(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,當(dāng)時,到的距離為2,不合題意,舍去;當(dāng)斜率存在時,設(shè),由直線與圓相切,得到,即有,解得,故直線,即為點睛:本題考查直線與圓位置關(guān)系,考查圓的方程的求法和直線與圓相切的條件,考查運算能力,屬于中檔題;圓的方程有一般形式與標準形式,在該題中利用待定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年醫(yī)用耗材及檢驗試劑知識產(chǎn)權(quán)保護采購合同3篇
- 新疆科技職業(yè)技術(shù)學(xué)院《畢業(yè)設(shè)計展示》2023-2024學(xué)年第一學(xué)期期末試卷
- 新疆警察學(xué)院《在財務(wù)管理中的運用》2023-2024學(xué)年第一學(xué)期期末試卷
- 新疆警察學(xué)院《傳感器與自動檢測技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貨梯維修合同范例
- 旅游規(guī)劃編制合同范例
- 出租房到期后續(xù)租合同范例
- 車輛綠通維修合同范例
- 勞務(wù)合同范例 2014
- 原木購買合同范例
- 滄源永弄華能100MW茶光互補光伏發(fā)電項目環(huán)評報告
- 倉儲業(yè)行業(yè)SWOT分析
- 公司金融學(xué)張德昌課后參考答案
- 商務(wù)英語口語與實訓(xùn)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- DB3302-T 1015-2022 城市道路清掃保潔作業(yè)規(guī)范
- 手術(shù)室提高患者術(shù)中保溫措施的執(zhí)行率PDCA課件
- 報刊雜志發(fā)放登記表
- 大學(xué)物理(下)(太原理工大學(xué))知到章節(jié)答案智慧樹2023年
- 布袋除塵器項目可行性分析報告
- 2023年安徽省公務(wù)員錄用考試《行測》真題及答案解析
- 我和我的祖國-電影賞析
評論
0/150
提交評論