版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南通市如東縣2025屆數(shù)學高二上期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C:(,)的一條漸近線被圓所截得的弦長為2,的C的離心率為()A. B.C.2 D.2.二項式的展開式中,各項二項式系數(shù)的和是()A.2 B.8C.16 D.323.是等差數(shù)列,,,的第()項A.98 B.99C.100 D.1014.已知,,若,則實數(shù)的值為()A. B.C. D.5.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.6.已知拋物線C:,焦點為F,點到在拋物線上,則()A.3 B.2C. D.7.函數(shù)的圖象大致是()A. B.C. D.8.在正方體中,分別是線段的中點,則點到直線的距離是()A. B.C. D.9.命題“,”否定形式是()A., B.,C., D.,10.已知等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠111.“”是直線與直線平行的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖三角形數(shù)陣:132456109871112131415……按照自上而下,自左而右的順序,位于第行的第列,則______.14.已知直線被圓截得的弦長等于該圓的半徑,則實數(shù)_____.15.設函數(shù),.若對任何,,恒成立,求的取值范圍______.16.若函數(shù)在(0,+∞)內(nèi)有且只有一個零點,則a的值為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點是曲線上的動點(點在軸左側),以點為頂點作等腰梯形,使點在此曲線上,點在軸上.設,等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當為何值時,等腰梯形的面積最大?求出最大面積.18.(12分)在平面直角坐標系中,橢圓:的左頂點到右焦點的距離是3,離心率為(1)求橢圓的標準方程;(2)斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓相交于,兩點.已知點,求的值19.(12分)如圖,正方體的棱長為2,點為的中點.(1)求直線與平面所成角的正弦值;(2)求點到平面的距離.20.(12分)已知橢圓C:短軸長為2,且點在C上(1)求橢圓C的標準方程;(2)設、為橢圓的左、右焦點,過的直線l交橢圓C與A、B兩點,若的面積是,求直線l的方程21.(12分)如圖,在梯形中,,,平面,四邊形為矩形,點為線段的中點,且(1)求證:平面平面;(2)若平面與平面所成銳二面角的余弦值為,則三棱錐F-ABC的體積為多少?22.(10分)某校高二年級全體學生參加了一次數(shù)學測試,學校利用簡單隨機抽樣方法從甲班、乙班各抽取五名同學的數(shù)學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由雙曲線的方程可得漸近線的直線方程,根據(jù)直線和圓相交弦長可得圓心到直線的距離,進而可得,結合,可得離心率.【詳解】雙曲線的一條漸近線方程為,即,被圓所截得的弦長為2,所以圓心到直線的距離為,,解得,故選:C【點睛】本題考查了雙曲線的漸近線和離心率、直線和圓的相交弦、點到直線距離等基本知識,考查了運算求解能力和邏輯推理能力,轉化的數(shù)學思想,屬于一般題目.2、D【解析】根據(jù)給定條件利用二項式系數(shù)的性質直接計算作答.【詳解】二項式的展開式的各項二項式系數(shù)的和是.故選:D3、C【解析】等差數(shù)列,,中,,,由此求出,令,得到是這個數(shù)列的第100項【詳解】解:等差數(shù)列,,中,,令,得是這個數(shù)列的第100項故選:C4、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.5、A【解析】根據(jù)命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數(shù)的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應滿足,解得,所以實數(shù)的取值范圍是故選:A6、D【解析】利用拋物線的定義求解.【詳解】因為點在拋物線上,,解得,利用拋物線的定義知故選:D7、A【解析】根據(jù)函數(shù)的定義域及零點的情況即可得到答案.【詳解】函數(shù)的定義域為,則排除選項、,當時,,則在上單調(diào)遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.8、A【解析】以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系,然后,列出計算公式進行求解即可【詳解】如圖,以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系.因為,所以,所以,則點到直線的距離故選:A9、C【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,是特稱命題,所以其否定是全稱命題,即為,故選:C10、D【解析】根據(jù)等比數(shù)列的通項公式,前n項和的意義,可逐項分析求解.【詳解】因為等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,所以當時,由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因為當時,,,所以,即-,當時,,綜上,故C正確;若=,且k≠1,則,即,因為,故,故矛盾,所以D不正確.故選:D11、C【解析】先根據(jù)直線平行的充要條件求出a,然后可得.【詳解】若,則,,顯然平行;若直線,則且,即.故“”是直線與直線平行的充要條件.故選:C12、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數(shù)量關系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知到第行結束一共有個數(shù)字,由此可知在第行;又由圖可知,奇數(shù)行從左到右是從小到大排列,偶數(shù)行從左到右是從大到小排列,第行個數(shù)字從大到小排列,由此可知在到數(shù)第列,據(jù)此即可求出,進而求出結果.【詳解】由圖可知,第1行有1個數(shù)字,第2行有2個數(shù)字,第2行有3個數(shù)字,……第行有個數(shù)字,由此規(guī)律可知,到第行結束一共有個數(shù)字;又當時,,所以第行結束一共有個數(shù)字;當時,,所以在第行,故;由圖可知,奇數(shù)行從左到右是從小到大排列,偶數(shù)行從左到右是從大到小排列,第行是偶數(shù)行,共個數(shù)字,從大到小排列,所以在倒數(shù)第列,所以,所以.故答案為:.14、2或-4【解析】求出圓心到直線的距離,由幾何法表示出弦長,列出等量關系,即可求出結果.【詳解】由得,所以圓的圓心為,半徑,圓心到直線的距離,則由題可得,即,解得或.故答案為:2或.15、【解析】先把原不等式轉化為恒成立,構造函數(shù),利用恒成立,求出的取值范圍.【詳解】因為對任何,,所以對任何,,所以在上為減函數(shù).,,所以恒成立,即對恒成立,所以,所以.即的取值范圍是.故答案為:.【點睛】恒(能)成立問題求參數(shù)的取值范圍:①參變分離,轉化為不含參數(shù)的最值問題;②不能參變分離,直接對參數(shù)討論,研究的單調(diào)性及最值;③特別地,個別情況下恒成立,可轉換為(二者在同一處取得最值).16、a=3【解析】對函數(shù)進行求導,分類討論函數(shù)單調(diào)性,根據(jù)單調(diào)性結合已知可以求出a的值.【詳解】∵函數(shù)在(0,+∞)內(nèi)有且只有一個零點,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①當a≤0時,f′(x)=2x(3x﹣a)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,f(0)=1,f(x)在(0,+∞)上沒有零點,舍去;②當a>0時,f′(x)=2x(3x﹣a)>0的解為x,∴f(x)在(0,)上遞減,在(,+∞)遞增,又f(x)只有一個零點,∴f()1=0,解得a=3故答案為:a=3【點睛】本題考查了利用導數(shù)研究已知函數(shù)的零點求參數(shù)取值問題,考查了分類討論和數(shù)學運算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)當時取到最大值,【解析】(1)設點,則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進而得的最值,進而得的最大值.【詳解】解:(1)根據(jù)題意,設點,由是曲線上的動點得:,由于橢圓與軸交點為,故,所以即:(2)結合(1),對兩邊平方得:,令,則,所以當時,,當時,,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當時,取到最大值,.【點睛】本題考查利用導數(shù)研究實際問題,考查數(shù)學應用能力與計算能力,是中檔題.18、(1);(2).【解析】(1)根據(jù)題意得到關于的方程,解之即可求出結果;(2)聯(lián)立直線的方程與橢圓方程,結合韋達定理以及平面向量數(shù)量積的坐標運算即可求出結果.【小問1詳解】因為橢圓的左頂點到右焦點的距離是3,所以又橢圓的離心率是,所以,解得,,從而所以橢圓的標準方程【小問2詳解】因為直線的斜率為,且過右焦點,所以直線的方程為聯(lián)立直線的方程與橢圓方程,消去,得,其中設,,則,因為,所以因此的值是19、(1)(2)【解析】(1)建立空間直角坐標系,求出平面的一個法向量及,利用向量的夾角公式即可得解;(2)直接利用向量公式求解即可【小問1詳解】解:以點作坐標原點,建立如圖所示的空間直角坐標系,則,0,,,2,,,0,,,0,,設平面的一個法向量為,又,則,則可取,又,設直線與平面的夾角為,則,直線與平面的正弦值為;【小問2詳解】解:因為所以點到平面的距離為,點到平面的距離為20、(1);(2)或.【解析】(1)根據(jù)短軸長求出b,根據(jù)M在C上求出a;(2)根據(jù)題意設直線l為,與橢圓方程聯(lián)立得根與系數(shù)關系,根據(jù)=即可求出m的值.【小問1詳解】∵短軸長為2,∴,∴,又∵點在C上,∴,∴,∴橢圓C的標準方程為;【小問2詳解】由(1)知,∵當直線l斜率為0時,不符合題意,∴設直線l的方程為:,聯(lián)立,消x得:,∵,∴設,,則,∵,∴,∴,即,解得,∴直線l的方程為:或.21、(1)證明見解析;(2)【解析】(1)先證線面垂直,再證面面垂直即可解決;(2)建立空間直角坐標系,以向量法去求平面與平面所成銳二面角的余弦值,列方程解得的長度,即可求得三棱錐F-ABC的體積.【小問1詳解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,則平面平面【小問2詳解】由(1)知,,兩兩垂直,以為坐標原點,分別以直線,,為軸、軸、軸建立空間直角坐標系因為,,所以,令則,,,所以,設為平面的一個法向量,由,得解得,取,則,又是平面的一個法向量.設平面與平面所成銳二面角為,則,即解之得,又,故即22、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025停薪留職合同的適用的主體和辦理的程序
- 2025公關活動策劃承辦合同書
- 2024機場防護服采購合同模板
- 2024年鐵路運輸承運人責任與義務綜合協(xié)議3篇
- 二零二五年度卞巧離婚協(xié)議書及婚后房產(chǎn)權益歸屬3篇
- 2024版房地產(chǎn)經(jīng)紀服務合同
- 2024年院線電影美術創(chuàng)意指導與聘用合同3篇
- 2025年度煤炭行業(yè)居間代理服務合同范本6篇
- 2024年銅加工行業(yè)技術改造合作合同范本3篇
- 二零二五年度園林景觀工程承攬工程居間合同2篇
- 紅色旅游智慧樹知到期末考試答案章節(jié)答案2024年南昌大學
- CBT3780-1997 管子吊架行業(yè)標準
- 2024年遼寧裝備制造職業(yè)技術學院單招職業(yè)適應性測試題庫帶答案
- 江西省南昌市東湖區(qū)2023-2024學年三年級上學期期末語文試卷
- python程序設計-說課
- ISO15614-1 2017 金屬材料焊接工藝規(guī)程及評定(中文版)
- 中國省市地圖模板可編輯模板課件
- 《單片機技術》課件-2-3實現(xiàn)電子門鈴 -實操
- 《中國潰瘍性結腸炎診治指南(2023年)》解讀
- 縣級臨床重點??平ㄔO項目申報書
- 兒童社區(qū)獲得性肺炎的診斷和治療
評論
0/150
提交評論