版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽省六安市舒城中學(xué)仁英班數(shù)學(xué)高二上期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的導(dǎo)函數(shù)為,對(duì)任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.2.已知一組數(shù)據(jù)為:2,4,6,8,這4個(gè)數(shù)的方差為()A.4 B.5C.6 D.73.在等差數(shù)列{an}中,a1=2,a5=3a3,則a3等于()A.-2 B.0C.3 D.64.直線的傾斜角的大小為()A. B.C. D.5.已知數(shù)列滿足,,記數(shù)列的前n項(xiàng)和為,若對(duì)于任意,不等式恒成立,則實(shí)數(shù)k的取值范圍為()A. B.C. D.6.設(shè)函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.7.雙曲線的漸近線方程為A. B.C. D.8.定義運(yùn)算:.已知,都是銳角,且,,則()A. B.C. D.9.下面四個(gè)說(shuō)法中,正確說(shuō)法的個(gè)數(shù)為()(1)如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合;(2)兩條直線可以確定一個(gè)平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內(nèi).A.1 B.2C.3 D.410.已知函數(shù)在上可導(dǎo),且,則與的大小關(guān)系為A. B.C. D.不確定11.若圓與圓相切,則實(shí)數(shù)a的值為()A.或0 B.0C. D.或12.酒駕是嚴(yán)重危害交通安全的違法行為.根據(jù)國(guó)家有關(guān)規(guī)定:100血液中酒精含量在20~80之間為酒后駕車,80及以上為醉酒駕車.假設(shè)某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量會(huì)以每小時(shí)20%的速度減少,若他想要在不違法的情況下駕駛汽車,則至少需經(jīng)過(guò)的小時(shí)數(shù)約為()(參考數(shù)據(jù):,)A.6 B.7C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的導(dǎo)函數(shù)______.14.已知=(3,a+b,a﹣b)(a,b∈R)是直線l的方向向量,=(1,2,3)是平面α的法向量,若l⊥α,則5a+b=__15.命題“,”是真命題,則的取值范圍是________16.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實(shí)數(shù)m的值為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,,為的中點(diǎn),連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.18.(12分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列是等比數(shù)列,,(1)求,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和19.(12分)近年來(lái)某村制作的手工藝品在國(guó)內(nèi)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(?。┤粢患止に嚻?位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ⅱ)若3位行家中僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān).若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí);若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(ⅲ)若3位行家中有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)求81件手工藝品中,質(zhì)量為C級(jí)的手工藝品件數(shù)的方差;(3)求10件手工藝品中,質(zhì)量為D級(jí)的手工藝品最有可能是多少件?20.(12分)已知圓M經(jīng)過(guò)原點(diǎn)和點(diǎn),且它的圓心M在直線上.(1)求圓M的方程;(2)若點(diǎn)D為圓M上的動(dòng)點(diǎn),定點(diǎn),求線段CD的中點(diǎn)P的軌跡方程.21.(12分)已知函數(shù)f(x)=ax-2lnx(1)討論f(x)的單調(diào)性;(2)設(shè)函數(shù)g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范圍22.(10分)已知圓的圓心在直線上,且圓經(jīng)過(guò)點(diǎn)與點(diǎn).(1)求圓的方程;(2)過(guò)點(diǎn)作圓的切線,求切線所在的直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對(duì)任意,都有成立,即令,則,所以函數(shù)在上單調(diào)遞增不等式即,即因?yàn)?,所以所以,,解得,所以不等式的解集為故選:C.2、B【解析】根據(jù)數(shù)據(jù)的平均數(shù)和方差的計(jì)算公式,準(zhǔn)確計(jì)算,即可求解.【詳解】由平均數(shù)的計(jì)算公式,可得,所以這4個(gè)數(shù)的方差為故選:B.3、A【解析】利用已知條件求得,由此求得.【詳解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故選:A.4、B【解析】由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選5、C【解析】由已知得,根據(jù)等比數(shù)列的定義得數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,由此求得,然后利用裂項(xiàng)求和法求得,進(jìn)而求得的取值范圍.【詳解】解:依題意,當(dāng)時(shí),,則,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,,即,所以,所以,所以的取值范圍是.故選:C.6、A【解析】利用導(dǎo)數(shù)的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A7、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.8、B【解析】,只需求出與的正、余弦值即可,用平方關(guān)系時(shí)注意角的范圍.【詳解】解:因?yàn)?,都是銳角,所以,,因?yàn)椋?,即,,所以,,因?yàn)椋?,故選:B.【點(diǎn)睛】信息給予題,已知三角函數(shù)值求三角函數(shù)值,考查根據(jù)三角函數(shù)的恒等變換求值,基礎(chǔ)題.9、A【解析】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個(gè)平面即可判斷;利用平面的基本性質(zhì)中的公理判斷即可;若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),即可判斷.【詳解】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個(gè)平面,故(2)不正確;利用平面的基本性質(zhì)中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),故(4)不正確,綜上所述只有一個(gè)說(shuō)法是正確的,故選:A【點(diǎn)睛】本題主要考查了空間中點(diǎn),線,面的位置關(guān)系.屬于較易題.10、B【解析】由,所以.11、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計(jì)算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點(diǎn)不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實(shí)數(shù)a的值為或.故選:D12、C【解析】根據(jù)題意列出不等式,利用指對(duì)數(shù)冪的互化和對(duì)數(shù)的運(yùn)算公式即可解出不等式.【詳解】設(shè)該駕駛員至少需經(jīng)過(guò)x個(gè)小時(shí)才能駕駛汽車,則,所以,則,所以該駕駛員至少需經(jīng)過(guò)約8個(gè)小時(shí)才能駕駛汽車.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本初等函數(shù)的求導(dǎo)公式及積的求導(dǎo)法則計(jì)算作答.【詳解】函數(shù)定義域?yàn)?,則,所以.故答案為:14、36【解析】根據(jù)方向向量和平面法向量的定義即可得出,然后即可得出,然后求出a,b的值,進(jìn)而求出5a+b的值【詳解】∵l⊥α,∴,∴,解得,∴故答案為:3615、【解析】依題意可得,是真命題,參變分離得到在上有解,再利用構(gòu)造函數(shù)利用函數(shù)的單調(diào)性計(jì)算可得.【詳解】,等價(jià)于在上有解設(shè),,則在上單調(diào)遞減,在上單調(diào)遞增,又,,所以,即故答案為:16、1【解析】由兩條直線垂直可知,進(jìn)而解得答案即可.【詳解】因?yàn)閮蓷l直線垂直,所以.故答案為:1.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明過(guò)程見(jiàn)解析;(2).【解析】(1)根據(jù)平行四邊形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理進(jìn)行證明即可;(2)利用空間向量夾角公式進(jìn)行求解即可.【小問(wèn)1詳解】因?yàn)闉榈闹悬c(diǎn),所以,而,所以四邊形是平行四邊形,因此,因?yàn)?,,為的中點(diǎn),所以,,而,因?yàn)?,所以,而平面,所以平面;【小?wèn)2詳解】根據(jù)(1),建立如圖所示的空間直角坐標(biāo)系,,于是有:,則平面的法向量為:,設(shè)平面的法向量為:,所以,設(shè)平面與平面的夾角為,所以.18、(1),(2)【解析】(1)利用求出通項(xiàng)公式,根據(jù)已知求出公比即可得出的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求解.【小問(wèn)1詳解】因?yàn)閿?shù)列的前項(xiàng)和為,且,當(dāng)時(shí),,當(dāng)時(shí),,滿足,所以,設(shè)等比數(shù)列的公比為,因?yàn)?,,所以,解得,所以;【小?wèn)2詳解】因?yàn)椋?,則,兩式相減得,所以.19、(1)(2)(3)2件【解析】(1)根據(jù)相互獨(dú)立事件的概率公式計(jì)算可得;(2)首先求出一件手工藝品質(zhì)量為C級(jí)的概率,設(shè)81件手工藝品中質(zhì)量為C級(jí)的手工藝品是X件,則,再根據(jù)二項(xiàng)分布的方差公式計(jì)算可得;(3)首先求出一件手工藝品質(zhì)量為D級(jí)的概率,設(shè)10件手工藝品中質(zhì)量為D級(jí)的手工藝品是ξ件,則,根據(jù)二項(xiàng)分布的概率公式求出的最大值,即可得解;【小問(wèn)1詳解】解:一件手工藝品質(zhì)量為B級(jí)的概率為【小問(wèn)2詳解】解:一件手工藝品質(zhì)量為C級(jí)的概率為,設(shè)81件手工藝品中質(zhì)量為C級(jí)的手工藝品是X件,則,所以【小問(wèn)3詳解】解:一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中質(zhì)量為D級(jí)的手工藝品是ξ件,則,則,由解得,所以當(dāng)時(shí),,即,由解得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中質(zhì)量為D級(jí)的最有可能是2件20、(1).(2).【解析】(1)設(shè)圓M的方程為,由已知條件建立方程組,求解即可;(2)設(shè),,依題意得.代入圓M的方程可得點(diǎn)P的軌跡方程.【小問(wèn)1詳解】解:設(shè)圓M的方程為,則圓心依題意得,解得.所以圓M的方程為.【小問(wèn)2詳解】解:設(shè),,依題意得,得.點(diǎn)為圓M上的動(dòng)點(diǎn),得,化簡(jiǎn)得P的軌跡方程為.21、(1)答案見(jiàn)解析;(2).【解析】(1)根據(jù)實(shí)數(shù)a的正負(fù)性,結(jié)合導(dǎo)數(shù)的性質(zhì)分類討論求解即可;(2)利用常變量分離法,通過(guò)構(gòu)造函數(shù),利用導(dǎo)數(shù)的性質(zhì)進(jìn)行求解即可.【小問(wèn)1詳解】當(dāng)a≤0時(shí),在(0,+∞)上恒成立;當(dāng)a>0時(shí),令得;令得;綜上:a≤0時(shí)f(x)在(0,+∞)上單調(diào)遞減;a>0時(shí),f(x)在上單調(diào)遞減,在上單調(diào)遞增;【小問(wèn)2詳解】由題意知ax-2lnx≤x-2在(0,+∞)上有解則ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗極大值↘所以,因此有所以a的取值范圍為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用常變量分離法利用導(dǎo)數(shù)的性質(zhì)是解題的關(guān)鍵.22、(1);(2)或.【解析】(1)求出線段中點(diǎn),進(jìn)而得到線段的垂直平分線為,與聯(lián)立得交點(diǎn),∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度國(guó)際貿(mào)易物流運(yùn)輸合同3篇
- 2024年城市綜合體停車場(chǎng)租賃管理服務(wù)協(xié)議2篇
- 洛陽(yáng)文化旅游職業(yè)學(xué)院《框架開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 洛陽(yáng)商業(yè)職業(yè)學(xué)院《素描4(油畫方向)》2023-2024學(xué)年第一學(xué)期期末試卷
- 影視項(xiàng)目部攝影師聘用合同
- 2024年太陽(yáng)能光伏發(fā)電項(xiàng)目電力設(shè)施遷移與接入合同3篇
- 清潔公司精裝房施工合同
- 2024年某科技公司關(guān)于云計(jì)算服務(wù)提供合同
- 2025泥工包工合同范文
- 市場(chǎng)研究保密風(fēng)險(xiǎn)評(píng)估報(bào)告
- 2023年益陽(yáng)市安化縣招聘鄉(xiāng)鎮(zhèn)衛(wèi)生院護(hù)理人員筆試真題
- 人音版音樂(lè)七年級(jí)上冊(cè)《父親的草原母親的河》課件
- 2024年度短視頻內(nèi)容創(chuàng)作服務(wù)合同3篇
- 2024年度拼多多店鋪托管經(jīng)營(yíng)合同2篇
- 2023年北京腫瘤醫(yī)院(含社會(huì)人員)招聘筆試真題
- 能源管理總結(jié)報(bào)告
- 2024年時(shí)事政治試題庫(kù)
- 2024-2025學(xué)年統(tǒng)編版五年級(jí)語(yǔ)文上冊(cè)第七單元達(dá)標(biāo)檢測(cè)卷(原卷+答案)
- 人教版七年級(jí)語(yǔ)文上冊(cè)《課內(nèi)文言文基礎(chǔ)知識(shí) 》專項(xiàng)測(cè)試卷及答案
- 【初中數(shù)學(xué)】基本平面圖形單元測(cè)試 2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)上冊(cè)
- 旅行社分店加盟協(xié)議書(2篇)
評(píng)論
0/150
提交評(píng)論