江蘇省南通市啟東中學2025屆高二上數(shù)學期末考試模擬試題含解析_第1頁
江蘇省南通市啟東中學2025屆高二上數(shù)學期末考試模擬試題含解析_第2頁
江蘇省南通市啟東中學2025屆高二上數(shù)學期末考試模擬試題含解析_第3頁
江蘇省南通市啟東中學2025屆高二上數(shù)學期末考試模擬試題含解析_第4頁
江蘇省南通市啟東中學2025屆高二上數(shù)學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南通市啟東中學2025屆高二上數(shù)學期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)2.為發(fā)揮我市“示范性高中”的輻射帶動作用,促進教育的均衡發(fā)展,共享優(yōu)質教育資源.現(xiàn)分派我市“示范性高中”的5名教師到,,三所薄弱學校支教,開展送教下鄉(xiāng)活動,每所學校至少分派一人,其中教師甲不能到學校,則不同分派方案的種數(shù)是()A.150 B.136C.124 D.1003.設,直線與直線平行,則()A. B.C. D.4.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.5.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條6.積分()A. B.C. D.7.已知拋物線:的焦點為F,準線l上有兩點A,B,若為等腰直角三角形且面積為8,則拋物線C的標準方程是()A. B.C.或 D.8.已知數(shù)據(jù)的平均數(shù)是,方差是4,則數(shù)據(jù)的方差是()A.3.4 B.3.6C.3.8 D.49.在平面直角坐標系中,拋物線上點到焦點的距離為3,則焦點到準線的距離為()A. B.C.1 D.10.已知實數(shù)a,b滿足,則下列不等式中恒成立的是()A. B.C. D.11.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或12.已知各項都為正數(shù)的等比數(shù)列,其公比為q,前n項和為,滿足,且是與的等差中項,則下列選項正確的是()A. B.C D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.14.已知雙曲線的左、右焦點分別為,,點是圓上一個動點,且線段的中點在的一條漸近線上,若,則的離心率的取值范圍是________15.,利用課本中推導等差數(shù)列前項和的公式的方法,可求得______16.已知為拋物線上任意一點,為拋物線的焦點,為平面內(nèi)一定點,則的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足;正項等比數(shù)列滿足,,(1)求數(shù)列,的通項公式;(2)數(shù)列滿足,的前n項和為,求的最大值.18.(12分)已知三棱柱的側棱垂直于底面,,,,,分別是,的中點.(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.19.(12分)經(jīng)觀測,某公路段在某時段內(nèi)的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關系:(1)在該時段內(nèi),當汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到)(2)為保證在該時段內(nèi)車流量至少為千輛/小時,則汽車的平均速度應控制在什么范圍內(nèi)?20.(12分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關于軸的對稱點為.求的最大值及相應的.21.(12分)如圖,在直三棱柱中,,,與交于點,為的中點,(1)求證:平面;(2)求證:平面平面22.(10分)已知數(shù)列滿足(1)求數(shù)列的通項公式;(2)是否存在正實數(shù)a,使得不等式對一切正整數(shù)n都成立?若存在,求出a的取值范圍;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)確定平面的條件可對每一個選項進行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C2、D【解析】對甲所在組的人數(shù)分類討論即得解.【詳解】當甲一個人去一個學校時,有種;當甲所在的學校有兩個老師時,有種;當甲所在的學校有三個老師時,有種;所以共有28+48+24=100種.故選:D【點睛】方法點睛:排列組合常用方法有:簡單問題直接法、小數(shù)問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復雜問題分類法、等概率問題縮倍法.要根據(jù)已知條件靈活選擇方法求解.3、C【解析】根據(jù)直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經(jīng)檢驗,滿足題意.故選:C4、B【解析】由題設可得,又,易知,,將問題轉化為平面點線距離關系:向量的終點為圓心,1為半徑的圓上的點到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉化為求在圓上的哪一點時,使最小,又,∴當且僅當三點共線且時,最小為.故選:B.【點睛】關鍵點點睛:由已知確定,,構成等邊三角形,即可將問題轉化為圓上動點到射線的距離最短問題.5、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設直線方程為,與聯(lián)立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B6、B【解析】根據(jù)定積分的幾何意義求值即可.【詳解】由題設,定積分表示圓在x軸的上半部分,所以.故選:B7、C【解析】分或()兩種情況討論,由面積列方程即可求解【詳解】由題意得,當時,,解得;當或時,,解得,所以拋物線的方程是或.故選:C.8、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數(shù)據(jù)的方差為:.故選:B9、D【解析】根據(jù)給定條件求出拋物線C的焦點、準線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準線,依題意,由拋物線定義得,解得,所以拋物線焦點到準線的距離為.故選:D10、D【解析】利用特殊值排除錯誤選項,利用函數(shù)單調(diào)性證明正確選項.【詳解】時,,但,所以A選項錯誤.時,,但,所以B選項錯誤.時,,但,所以C選項錯誤.在上遞增,所以,即D選項正確.故選:D11、D【解析】由光的反射原理知,反射光線的反向延長線必過點,設反射光線所在直線的斜率為,則反射光線所在直線方程為:,即:.又因為光線與圓相切,所以,,整理:,解得:,或,故選D考點:1、圓的標準方程;2、直線的方程;3、直線與圓的位置關系.12、D【解析】根據(jù)題意求得,即可判斷AB,再根據(jù)等比數(shù)列的通項公式即可判斷C;再根據(jù)等比數(shù)列前項和公式即可判斷D.【詳解】解:因為各項都為正數(shù)的等比數(shù)列,,所以,又因是與的等差中項,所以,即,解得或(舍去),故B錯誤;所以,故A錯誤;所以,故C錯誤;所以,故D正確.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:14、【解析】設,,因為點是線段中點,所以有,代入坐標求出點的軌跡為圓,因為點在漸近線上,所以圓與漸近線有公共點,利用點到直線的距離求出臨界狀態(tài)下漸近線的斜率,數(shù)形結合求出有公共點時漸近線斜率的范圍,從而求出離心率的范圍.【詳解】解:設,,因為點是線段的中點,所以有,即有,因為點在圓上,所以滿足:,代入可得:,即,所以點的軌跡是以為圓心,以1為半徑的圓,如圖所示:因為點在漸近線上,所以圓與漸近線有公共點,當兩條漸近線與圓恰好相切時為臨界點,則:圓心到漸近線的距離為,因為,所以,即,且,所以,此時,,當時,漸近線與圓有公共點,.故答案為:.15、2020【解析】先證得,利用倒序相加法求得表達式值.【詳解】解:由題意可知,令S=則S=兩式相加得,故填:【點睛】本題考查借助倒序相加求函數(shù)值的和,屬于中檔題,解題關鍵是找到的規(guī)律16、3【解析】利用拋物線的定義,再結合圖形即求.【詳解】由題可得拋物線的準線為,設點在準線上的射影為,則根據(jù)拋物線的定義可知,∴要求取得最小值,即求取得最小,當三點共線時最小,為.故答案為:3.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)8【解析】(1)利用已知的關系把替換成,再把兩式作差后整理即得通項公式,的通項公式可由已知條件建立基本量的方程求解.(2)由的通項公式可判斷,,,當時,所有正項的和即為的最大項的值.小問1詳解】,,兩式相減得所以,又也滿足,故;設等比數(shù)列的公比為,由得,即,因為,即,,(負值舍去),所以【小問2詳解】由題意,,則,,,且當時,所以的最大值是.18、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點為原點建立空間直角坐標系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個平面的法向量,利用兩個向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點為原點建立空間直角坐標系.根據(jù)條件容易求出如下各點坐標:,,,,,,,.(Ⅰ)證明:∵,,是平面的一個法向量,且,所以.又∵平面,∴平面;(Ⅱ)設是平面的法向量,因為,,由,得.解得平面的一個法向量,由已知,平面的一個法向量為,,∴二面角的余弦值是.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.19、(1)當(千米/小時)時,車流量最大,最大值約為千輛/小時;(2)汽車的平均速度應控制在這個范圍內(nèi)(單位:千米/小時).【解析】(1)利用基本不等式可求得的最大值,及其對應的值,即可得出結論;(2)解不等式即可得解.【小問1詳解】解:,(千輛/小時),當且僅當時,即當(千米/小時)時,車流量最大,最大值約為千輛/小時.【小問2詳解】解:據(jù)題意有,即,即,解得,所以汽車的平均速度應控制在這個范圍內(nèi)(單位:千米/小時).20、(1);(2),.【解析】(1)根據(jù)題意可得,然后根據(jù),,計算可得,最后可得結果.(2)假設直線的方程為,根據(jù)與拋物線相切,可得,然后與橢圓聯(lián)立,計算,然后計算點到的距離,計算,利用函數(shù)性質可得結果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點到的距離為..令,則,.此時,即【點睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.21、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱的性質、平行四邊形的性質,結合三角形中位線定理、線面平行的判定定理進行證明即可;(2)根據(jù)直棱柱的性質、菱形的判定定理和性質,結合線面垂直的判定定理、面面垂直的判定定理進行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論