數(shù)學(xué)自主訓(xùn)練:任意角的三角函數(shù)_第1頁
數(shù)學(xué)自主訓(xùn)練:任意角的三角函數(shù)_第2頁
數(shù)學(xué)自主訓(xùn)練:任意角的三角函數(shù)_第3頁
數(shù)學(xué)自主訓(xùn)練:任意角的三角函數(shù)_第4頁
數(shù)學(xué)自主訓(xùn)練:任意角的三角函數(shù)_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精自主廣場(chǎng)我夯基我達(dá)標(biāo)1。當(dāng)α為第二象限角時(shí),的值是()A。1B。0C。2思路解析:利用三角函數(shù)值在各象限的符號(hào),去掉絕對(duì)值號(hào).∵α為第二象限角,∴sinα>0,cosα<0,故=2。答案:C2。a2sin(—1350°)+b2tan405°-(a-b)2cot765°-2abcos(—1080°)等于()A。0B。-1C。α2思路解析:利用三角函數(shù)誘導(dǎo)公式將任意角的三角函數(shù)化為0—2π間的三角函數(shù),進(jìn)而求值.即a2sin90°+b2tan45°—(a—b)2cot45°—2abcos0°=a2+b2-(a-b)2-2ab=0.答案:A3.已知角α的終邊在射線y=-3x(x≥0)上,則sinαcosa等于()A。B。C。D。思路解析:根據(jù)三角函數(shù)的定義,在終邊上取點(diǎn)求值.在α終邊上取一點(diǎn)P(1,—3),此時(shí)x=1,y=—3,∴r=.∴sinα=,cosα==.∴sinαcosα=×=.答案:A4。在[0,2π]上滿足sinα≥的x的取值范圍是()A。[0,]B。[,]C.[,]D。[,π]思路解析:如右圖所示,利用單位圓解不等式.按“等號(hào)”畫出適合的角的終邊,按“不等號(hào)”畫出適合的角的終邊(或終邊與單位圓的交點(diǎn)組成的弧段),按弧段在函數(shù)的定義域內(nèi)寫出相應(yīng)的不等式。答案:B5。sinθ和cosθ為方程2x2-mx+1=0的兩根,則=_________。思路解析:首先對(duì)原式化簡,然后由根與系數(shù)的關(guān)系及三角函數(shù)基本關(guān)系式求出m,進(jìn)而得出結(jié)果?!遱inθ和cosθ為方程2x2—mx+1=0的兩根,∴sinθ+cosθ=,sinθcosθ=.∴sin2θ+cos2θ+2sinθcosθ=?!?=—1?!鄊=±?!鄐inθ+cosθ=±?!?sinθ+cosθ=±.答案:±6.sin2α>0且cosα<0,試確定α所在的象限。思路分析:由sin2α>0得出α的范圍,再由cosα<0得出α的范圍,兩者取交集即可。解:∵sin2α>0,∴2kπ<2α<2kπ+π(k∈Z)?!鄈π<α<kπ+(k∈Z).當(dāng)k=2n(n∈Z)時(shí),有2nπ<α<2nπ+(n∈Z),∴α在第一象限。當(dāng)k=2n+1(n∈Z)時(shí),有2nπ+π<α<2nπ+(n∈Z),∴α在第三象限.∴α在第一或第三象限.由cosα<0可知α在第二或第三象限或α終邊在x軸的負(fù)半軸上。綜上所述,α在第三象限。我綜合我發(fā)展7。集合M={x|sin|x|=1},N={x||sinx|=1},則M與N之間的關(guān)系是()A。MNB。MNC.M=ND.M∩N=思路解析:采用淘汰法.sin|x|=1|x|=2kπ+(k∈Z)x=±(2kπ+)(k∈Z),|sinx|=1sinx=±1x=2kπ±(k∈Z),從而淘汰D.又|sin|=1,∴∈N,而sin||=sin=—1,∴M,從而淘汰B、C.答案:A8。如圖1—2-4,已知長方形的四個(gè)頂點(diǎn):A(0,0),B(2,0),C(2,1),D(0,1)。一質(zhì)點(diǎn)從AB的中點(diǎn)P0出發(fā),沿與AB夾角為θ的方向射到BC上的點(diǎn)P1后,依次反射到CD、DA和AB上的點(diǎn)P2、P3、P4(入射角等于反射角)。設(shè)P4的坐標(biāo)為(x4,0),若1<x4<2,則tanθ的范圍是()圖1—2—4A。(,1)B.(,)C.(,)D.(,)思路解析:我們可以把tanθ表示為x4的函數(shù),即得到tanθ=f(x4),再根據(jù)1<x4<2求解;或得到x4=f(tanθ),然后根據(jù)1<f(tanθ)<2解tanθ;也可用淘汰法。設(shè)P1(2,y1),P2(x2,1),P3(0,y3),其中P0(1,0),根據(jù)反射角與入射角相等的關(guān)系,得到關(guān)系式tanθ=,∴y1=tanθ,x2=2-,y3=1-x2tanθ=2—3tanθ,x4=.∵θ∈(0,),x4∈(1,2),∴1<-3<2,解得<tanθ<。答案:C9.已知θ為銳角,用三角函數(shù)定義證明1<sinθ+cosθ≤.思路分析:運(yùn)用三角函數(shù)的定義將三角函數(shù)表示為比值,從而將三角問題轉(zhuǎn)化為代數(shù)問題而獲得解決.證明:在角θ的終邊上任取一點(diǎn)P(x,y)(異于原點(diǎn)),則sinθ=,cosθ=?!擀葹殇J角,∴x>0,y>0。于是sinθ+cosθ==。又sinθ+cosθ=>1?!?<sinθ+cosθ≤.10.如圖1—2—5,某大風(fēng)車的半徑為2m,每12秒旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面0。5m,風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開始,運(yùn)動(dòng)t秒后與地面的距離為hm。你能想個(gè)辦法,求A點(diǎn)距地面的高度h與轉(zhuǎn)動(dòng)時(shí)間t之間的關(guān)系嗎?圖1—

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論