安徽省合肥市七中、合肥十中聯(lián)考2025屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第1頁
安徽省合肥市七中、合肥十中聯(lián)考2025屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第2頁
安徽省合肥市七中、合肥十中聯(lián)考2025屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第3頁
安徽省合肥市七中、合肥十中聯(lián)考2025屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第4頁
安徽省合肥市七中、合肥十中聯(lián)考2025屆高二上數(shù)學(xué)期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省合肥市七中、合肥十中聯(lián)考2025屆高二上數(shù)學(xué)期末經(jīng)典試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)F是雙曲線的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過F作垂直于x軸的直線與雙曲線交于G、H兩點(diǎn),若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.2.設(shè)是等比數(shù)列,且,,則()A.12 B.24C.30 D.323.《米老鼠和唐老鴨》這部動(dòng)畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個(gè)圓構(gòu)成米奇的簡(jiǎn)筆畫形象.已知3個(gè)圓方程分別為:圓圓,圓若過原點(diǎn)的直線與圓、均相切,則截圓所得的弦長(zhǎng)為()A. B.C. D.4.《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的類似問題:把150個(gè)完全相同的面包分給5個(gè)人,使每個(gè)人所得面包數(shù)成等差數(shù)列,且使較大的三份面包數(shù)之和的是較小的兩份之和,則最大的那份面包數(shù)為()A.30 B.40C.50 D.605.橢圓與(0<k<9)的()A.長(zhǎng)軸的長(zhǎng)相等B.短軸的長(zhǎng)相等C.離心率相等D.焦距相等6.下列直線中,傾斜角為45°的是()A. B.C. D.7.實(shí)數(shù)且,,則連接,兩點(diǎn)的直線與圓C:的位置關(guān)系是()A.相離 B.相切C.相交 D.不能確定8.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要9.如圖,在四面體OABC中,,,,點(diǎn)在線段上,且,為的中點(diǎn),則等于()A. B.C. D.10.已知圓的半徑為,平面上一定點(diǎn)到圓心的距離,是圓上任意一點(diǎn).線段的垂直平分線和直線相交于點(diǎn),設(shè)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為,當(dāng)時(shí),軌跡對(duì)應(yīng)曲線的離心率取值范圍為()A. B.C. D.11.為了防控新冠病毒肺炎疫情,某市疾控中心檢測(cè)人員對(duì)外來入市人員進(jìn)行核酸檢測(cè),人員甲、乙均被檢測(cè).設(shè)命題為“甲核酸檢測(cè)結(jié)果為陰性”,命題為“乙核酸檢測(cè)結(jié)果為陰性”,則命題“至少有一位人員核酸檢測(cè)結(jié)果不是陰性”可表示為()A. B.C. D.12.在長(zhǎng)方體中,()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線具有相同的焦點(diǎn),,且在第一象限交于點(diǎn),設(shè)橢圓和雙曲線的離心率分別為,,若,則的最小值為_______.14.已知等比數(shù)列滿足,,公比,則的前2021項(xiàng)和______15.如圖,在長(zhǎng)方體ABCD﹣A'B'C'D'中,點(diǎn)P,Q分別是棱BC,CD上的動(dòng)點(diǎn),BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__16.某中學(xué)高三(2)班甲,乙兩名同學(xué)自高中以來每次考試成績(jī)的莖葉圖如圖所示,則甲的中位數(shù)與乙的極差的和為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),曲線y=f(x)在點(diǎn)(0,4)處的切線方程為(1)求a,b的值;(2)求f(x)的極大值18.(12分)已知函數(shù)(1)求的圖象在點(diǎn)處的切線方程;(2)求在上的最大值與最小值19.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個(gè)不等實(shí)根,求實(shí)數(shù)的取值范圍20.(12分)已知,命題p:對(duì)任意,不等式恒成立;命題q:存在,使得不等式成立;(1)若p為真命題,求a的取值范圍;(2)若為真命題,求a的取值范圍21.(12分)設(shè)函數(shù)(I)求曲線在點(diǎn)處的切線方程;(II)設(shè),若函數(shù)有三個(gè)不同零點(diǎn),求c的取值范圍22.(10分)某校在全體同學(xué)中隨機(jī)抽取了100名同學(xué),進(jìn)行體育鍛煉時(shí)間的專項(xiàng)調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時(shí)間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時(shí)間不少于60分鐘的同學(xué)定義為鍛煉達(dá)標(biāo),平均每天體育鍛煉時(shí)間少于60分鐘的同學(xué)定義為鍛煉不達(dá)標(biāo)(1)求a的值,并估計(jì)該校同學(xué)平均每天體育鍛煉時(shí)間的中位數(shù);(2)在樣本中,對(duì)平均每天體育鍛煉時(shí)間不達(dá)標(biāo)的同學(xué),按分層抽樣的方法抽取6名同學(xué)了解不達(dá)標(biāo)的原因,再從這6名同學(xué)中隨機(jī)抽取2名進(jìn)行調(diào)研,求這2名同學(xué)中至少有一名每天體育鍛煉時(shí)間(單位:分鐘)在內(nèi)的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當(dāng)時(shí),,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.2、D【解析】根據(jù)已知條件求得的值,再由可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,,因此,.故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題3、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長(zhǎng)公式求弦長(zhǎng)【詳解】設(shè)過點(diǎn)的直線.由直線與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線的距離為則(2).又圓的半徑直線截圓所得弦長(zhǎng)結(jié)合(1)(2)兩式,解得4、C【解析】根據(jù)題意得到遞增等差數(shù)列中,,,從而化成基本量,進(jìn)行計(jì)算,再計(jì)算出,得到答案.【詳解】根據(jù)題意,設(shè)遞增等差數(shù)列,首項(xiàng)為,公差,則所以解得所以最大項(xiàng).故選:C5、D【解析】根據(jù)橢圓方程求得兩個(gè)橢圓的,由此確定正確選項(xiàng).【詳解】橢圓與(0<k<9)的焦點(diǎn)分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D6、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對(duì)于A,直線斜率為,對(duì)于B,直線無斜率,對(duì)于C,直線斜率,對(duì)于D,直線斜率,故選:C7、B【解析】由題意知,m,n是方程的根,再根據(jù)兩點(diǎn)式求出直線方程,利用圓心到直線的距離與半徑之間的關(guān)系即可求解.【詳解】由題意知,m,n是方程的根,,,過,兩點(diǎn)的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,考查了計(jì)算求解能力,屬于基礎(chǔ)題.8、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因?yàn)榉匠瘫硎緳E圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了由方程表示橢圓求參數(shù)的范圍,考查了充要條件和必要不充分條件,本題易錯(cuò)點(diǎn)警示:漏掉,本題屬于基礎(chǔ)題.9、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達(dá)式.【詳解】.故選:D.10、D【解析】分點(diǎn)A在圓內(nèi),圓外兩種情況,根據(jù)中垂線的性質(zhì),結(jié)合橢圓、雙曲線的定義可判斷軌跡,再由離心率計(jì)算即可求解.【詳解】當(dāng)A在圓內(nèi)時(shí),如圖,,所以的軌跡是以O(shè),A為焦點(diǎn)的橢圓,其中,,此時(shí),,.當(dāng)A在圓外時(shí),如圖,因?yàn)?,所以軌跡是以O(shè),A為焦點(diǎn)的雙曲線,其中,,此時(shí),,.綜上可知,.故選:D11、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測(cè)結(jié)果為陰性”,則命題為“甲核酸檢測(cè)結(jié)果不是陰性”;命題為“乙核酸檢測(cè)結(jié)果為陰性”,則命題為“乙核酸檢測(cè)結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測(cè)結(jié)果不是陰性”可表示為.故選D.12、D【解析】根據(jù)向量的運(yùn)算法則得到,帶入化簡(jiǎn)得到答案.【詳解】在長(zhǎng)方體中,易知,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意設(shè)焦距為,橢圓長(zhǎng)軸長(zhǎng)為,雙曲線實(shí)軸為,令在雙曲線的右支上,由已知條件結(jié)合雙曲線和橢圓的定義推出,由此能求出的最小值【詳解】由題意設(shè)焦距為,橢圓長(zhǎng)軸長(zhǎng)為,雙曲線實(shí)軸為,令在雙曲線的右支上,由雙曲線的定義,由橢圓定義,可得,,又,,可得,得,即,可得,則,當(dāng)且僅當(dāng),上式取得等號(hào),可得的最小值為故答案為:【點(diǎn)睛】本題考查橢圓和雙曲線的性質(zhì),主要是離心率,解題時(shí)要熟練掌握雙曲線、橢圓的定義,注意均值定理的合理運(yùn)用14、【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】因?yàn)榈缺葦?shù)列滿足,,公比,所以,故答案為:15、8【解析】設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關(guān)系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長(zhǎng)方體性質(zhì)知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:816、111【解析】求出甲的中位數(shù)和乙的極差即得解.【詳解】解:由題得甲的中位數(shù)為,乙的極差為,所以它們的和為.故答案為:111三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=4,b=4(2)【解析】(1)由題意得到關(guān)于的方程組,求解方程組即可求出答案.(2)結(jié)合(1)中求得的函數(shù)解析式,求導(dǎo)得到的單調(diào)性,可得當(dāng)x=-2時(shí),函數(shù)f(x)取得極大值.【小問1詳解】由已知得f(0)=4,f′(0)=4,故b=4,a+b=8從而a=4,b=4【小問2詳解】由(1)知,,令f′(x)=0得,x=-ln2或x=-2從而當(dāng)時(shí),f′(x)>0;當(dāng)x∈(-2,-ln2)時(shí),f′(x)<0故f(x)在(-∞,-2),(-ln2,+∞)上單調(diào)遞增,在(-2,-ln2)上單調(diào)遞減當(dāng)x=-2時(shí),函數(shù)f(x)取得極大值,極大值為18、(1);(2)最大值與最小值分別為與【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率即可求出結(jié)果;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而結(jié)合函數(shù)的單調(diào)性即可求出最值.【詳解】(1)因?yàn)?,所以所以所以的圖象在點(diǎn)處的切線方程為,即(2)由(1)知令,則;令,則所以在上單調(diào)遞減,在上單調(diào)遞增.所以又,所以所以在上的最大值與最小值分別為與19、(1);(2)【解析】(1)求出導(dǎo)數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)與恰有兩個(gè)不同交點(diǎn)即可得出.【詳解】(1)當(dāng)時(shí),函數(shù),則令,得,,當(dāng)x變化時(shí),的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當(dāng)時(shí),,故單調(diào)遞增,且;當(dāng)時(shí),,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個(gè)不同的交點(diǎn),只需∴實(shí)數(shù)a的取值范圍是【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查根據(jù)方程根的個(gè)數(shù)求參數(shù),解題的關(guān)鍵是參數(shù)分離,構(gòu)造函數(shù)利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)函數(shù)交點(diǎn)個(gè)數(shù)判斷.20、(1)(2)【解析】(1)利用判別式可求的取值范圍,注意就是否為零分類討論;(2)根據(jù)題設(shè)可得真或真,后者可用參變分離求出的取值范圍,結(jié)合(1)可求的取值范圍.【小問1詳解】當(dāng)p為真命題時(shí),當(dāng)時(shí),不等式顯然成立;當(dāng)時(shí),解得,故a取值范圍為.【小問2詳解】當(dāng)q為真命題時(shí),問題等價(jià)于存在,使得不等式成立,即,∵,當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立,∴因?yàn)闉檎婷},所以真或真,故a的取值范圍是21、(1)(2)【解析】(1)由導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)點(diǎn)斜式寫切線方程;(2)由函數(shù)圖像可知,極大值大于零且極小值小于零,解不等式可得c的取值范圍試題解析:解:(I)由,得因?yàn)?,,所以曲線在點(diǎn)處的切線方程為(II)當(dāng)時(shí),,所以令,得,解得或與在區(qū)間上的情況如下:所以,當(dāng)且時(shí),存在,,,使得由的單調(diào)性知,當(dāng)且僅當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論