下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE課時(shí)作業(yè)(五)同角三角函數(shù)的基本關(guān)系式一、選擇題1.若sinα+sin2α=1,那么cos2α+cos4α的值等于()A.0B.1C.2D.32.已知α是第三象限的角,cosα=-eq\f(12,13),則sinα=()A.eq\f(5,13)B.-eq\f(5,13)C.eq\f(5,12)D.-eq\f(5,12)3.若α∈[0,2π),且有eq\r(1-cos2α)+eq\r(1-sin2α)=sinα-cosα,則角α的取值范圍為()A.eq\b\lc\[\rc\)(\a\vs4\al\co1(0,\f(π,2)))B.eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))D.eq\b\lc\[\rc\](\a\vs4\al\co1(π,\f(3,2)π))4.若tanα=3,則2sinαcosα=()A.±eq\f(3,5)B.-eq\f(3,5)C.eq\f(3,5)D.eq\f(4,5)二、填空題5.已知△ABC中,tanA=-eq\f(5,12),則cosA=________.6.已知sinθ=eq\f(m-3,m+5),cosθ=eq\f(4-2m,m+5)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)<θ<π)),則tanθ=()A.eq\f(4-2m,m-3)B.±eq\f(m-3,4-2m)C.-eq\f(5,12)D.-eq\f(3,4)或-eq\f(5,12)7.已知sinαcosα=eq\f(1,5),則sinα-cosα=________.三、解答題8.已知tanα=eq\f(2,3),求下列各式的值:(1)eq\f(cosα-sinα,cosα+sinα)+eq\f(cosα+sinα,cosα-sinα);(2)eq\f(1,sinαcosα);(3)sin2α-2sinαcosα+4cos2α.9.求證:2(1-sinα)(1+cosα)=(1-sinα+cosα)2.[尖子生題庫(kù)]10.若α是三角形的內(nèi)角,且tanα=-eq\f(1,3),則求sinα+cosα的值.課時(shí)作業(yè)(五)同角三角函數(shù)的基本關(guān)系式1.解析:由sinα+sin2α=1,得sinα=cos2α,所以cos2α+cos4α=sinα+sin2α=1.答案:B2.解析:∵α是第三象限的角,∴sinα=-eq\r(1-cos2α)=-eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(12,13)))2)=-eq\f(5,13).答案:B3.解析:因?yàn)閑q\r(1-cos2α)+eq\r(1-sin2α)=sinα-cosα,所以eq\b\lc\{\rc\(\a\vs4\al\co1(sinα≥0,,cosα≤0,))又α∈[0,2π),所以α∈[eq\f(π,2),π],故選B.答案:B4.解析:2sinαcosα=eq\f(2sinαcosα,sin2α+cos2α)=eq\f(2tanα,tan2α+1)=eq\f(6,10)=eq\f(3,5).答案:C5.解析:∵tanA=-eq\f(5,12),又A是三角形的內(nèi)角,∴A是鈍角.∵eq\f(sinA,cosA)=-eq\f(5,12),∴-5cosA=12sinA.又sin2A+cos2A=1,∴cosA=-eq\f(12,13).答案:-eq\f(12,13)6.解析:由sin2θ+cos2θ=1,有eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(m-3,m+5)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4-2m,m+5)))2=1,化簡(jiǎn)得m2-8m=0,解得m=0或m=8,由于θ在其次象限,所以sinθ>0,m=0舍去,故m=8,sinθ=eq\f(5,13),cosθ=-eq\f(12,13),得tanθ=-eq\f(5,12).答案:C7.解析:(sinα-cosα)2=sin2α-2sinαcosα+cos2α=1-2sinαcosα=eq\f(3,5),則sinα-cosα=±eq\f(\r(15),5).答案:±eq\f(\r(15),5)8.解析:(1)eq\f(cosα-sinα,cosα+sinα)+eq\f(cosα+sinα,cosα-sinα)=eq\f(1-tanα,1+tanα)+eq\f(1+tanα,1-tanα)=eq\f(1-\f(2,3),1+\f(2,3))+eq\f(1+\f(2,3),1-\f(2,3))=eq\f(26,5).(2)eq\f(1,sinαcosα)=eq\f(sin2α+cos2α,sinαcosα)=eq\f(tan2α+1,tanα)=eq\f(13,6).(3)sin2α-2sinαcosα+4cos2α=eq\f(sin2α-2sinαcosα+4cos2α,sin2α+cos2α)=eq\f(tan2α-2tanα+4,tan2α+1)=eq\f(\f(4,9)-\f(4,3)+4,\f(4,9)+1)=eq\f(28,13).9.證明:右邊=2-2sinα+2cosα-2sinαcosα=2(1-sinα+cosα-sinαcosα)=2(1-sinα)(1+cosα)=左邊,∴2(1-sinα)(1+cosα)=(1-sinα+cosα)2.10.解析:由tanα=-eq\f(1,3),得sinα=-eq\f(1,3)cosα,將其代入sin2α+cos2α=1,得eq\f(10,9)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款合同訴訟時(shí)效及其影響因素
- 無(wú)底薪勞動(dòng)合同樣本
- 貨物銷售合同格式
- 二手車交易協(xié)議書(shū)模板示例
- 財(cái)務(wù)咨詢協(xié)議書(shū)
- 2024年肉類供貨合同范本
- 個(gè)人信貸代理協(xié)議
- 2024年項(xiàng)目合作協(xié)議書(shū)撰寫大全
- 承攬合同-網(wǎng)頁(yè)制作協(xié)議
- 聚丙烯供貨合同書(shū)聚丙烯采購(gòu)合同2024年
- 農(nóng)村一二三產(chǎn)業(yè)融合發(fā)展課件
- 醫(yī)學(xué)裝備管理委員會(huì)工作總結(jié)
- 自媒體短視頻編導(dǎo)績(jī)效考核指標(biāo)表
- 高速公路養(yǎng)護(hù)中心隧道消防應(yīng)急演練方案
- 幼兒園小班園本課程食育主題活動(dòng)案例分享教學(xué)設(shè)計(jì):《我和面粉做朋友》游戲案例(教案)
- 第四章:《政治學(xué)概論》之政治民主
- 2021年中國(guó)鐵路國(guó)際有限公司校園招聘筆試試題及答案解析
- 斯瓦希里語(yǔ)輕松入門
- 工程監(jiān)理工作醫(yī)用氣體管道施工質(zhì)量控制要點(diǎn)(最新可編輯Word版)
- 淺談危險(xiǎn)化學(xué)品企業(yè)重點(diǎn)人員安全資質(zhì)達(dá)標(biāo)導(dǎo)則(試行)
- ??低曊J(rèn)證工程師(HCA-Security)培訓(xùn)認(rèn)證考試
評(píng)論
0/150
提交評(píng)論