2023-2024學年四川省棠湖中學高三下第一次診斷考試數(shù)學試題_第1頁
2023-2024學年四川省棠湖中學高三下第一次診斷考試數(shù)學試題_第2頁
2023-2024學年四川省棠湖中學高三下第一次診斷考試數(shù)學試題_第3頁
2023-2024學年四川省棠湖中學高三下第一次診斷考試數(shù)學試題_第4頁
2023-2024學年四川省棠湖中學高三下第一次診斷考試數(shù)學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年四川省棠湖中學高三下第一次診斷考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.102.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.23.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.4.設為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.5.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.46.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.7.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.8.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.9.若不相等的非零實數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.10.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.311.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.202012.已知正四棱錐的側棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量與的夾角為,||=||=1,且⊥(λ),則實數(shù)_____.14.在邊長為2的正三角形中,,則的取值范圍為______.15.已知在等差數(shù)列中,,,前n項和為,則________.16.已知等比數(shù)列滿足,,則該數(shù)列的前5項的和為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.18.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.19.(12分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.20.(12分)為了保障全國第四次經濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業(yè)單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區(qū)采用的抽樣方法;(2)根據列聯(lián)表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”;(3)以該小區(qū)的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82821.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學、外語為必考科目,剩下的物理、化學、歷史、地理、生物、政治六科任選三科進行考試).為了了解學生對物理學科的喜好程度,某高中從高一年級學生中隨機抽取人做調查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據此資料判斷是否有的把握認為“喜歡物理與性別有關”;(2)為了了解學生對選科的認識,年級決定召開學生座談會.現(xiàn)從名男同學和名女同學(其中男女喜歡物理)中,選取名男同學和名女同學參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.22.(10分)某公司生產的某種產品,如果年返修率不超過千分之一,則其生產部門當年考核優(yōu)秀,現(xiàn)獲得該公司年的相關數(shù)據如下表所示:年份20112012201320142015201620172018年生產臺數(shù)(萬臺)2345671011該產品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(shù)(臺)2122286580658488部分計算結果:,,,,注:年返修率=(1)從該公司年的相關數(shù)據中任意選取3年的數(shù)據,以表示3年中生產部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學期望;(2)根據散點圖發(fā)現(xiàn)2015年數(shù)據偏差較大,如果去掉該年的數(shù)據,試用剩下的數(shù)據求出年利潤(百萬元)關于年生產臺數(shù)(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構建和的方程組求通項公式.2.A【解析】

對函數(shù)求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數(shù)的導數(shù)與極值,考查了學生的運算求解能力,屬于基礎題.3.C【解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.4.B【解析】

可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題5.B【解析】

根據函數(shù)的奇偶性和單調性得到可行域,畫出可行域和目標函數(shù),根據目標函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標函數(shù),,即,表示直線與軸截距的相反數(shù),根據平移得到:當直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數(shù)的單調性和奇偶性,線性規(guī)劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.6.C【解析】

根據,兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運算,屬于基礎題.7.C【解析】

,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質時,一般采用整體法,結合三角函數(shù)的性質,是一道容易題.8.B【解析】

根據特殊值及函數(shù)的單調性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調,故排除C;故選:B【點睛】本題考查根據函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.9.A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因為,,是不相等的非零實數(shù),所以,此時,所以.故選:A【點睛】本題考查了等差等比數(shù)列的綜合應用,考查了學生概念理解,轉化劃歸,數(shù)學運算的能力,屬于中檔題.10.A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.11.C【解析】

首先,根據二倍角公式和輔助角公式化簡函數(shù)解析式,根據所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數(shù)的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數(shù)解析式是解題的關鍵,屬于中檔題.12.C【解析】試題分析:設的交點為,連接,則為所成的角或其補角;設正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

根據條件即可得出,由即可得出,進行數(shù)量積的運算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點睛】考查向量數(shù)量積的運算及計算公式,以及向量垂直的充要條件.14.【解析】

建立直角坐標系,依題意可求得,而,,,故可得,且,由此構造函數(shù),,利用二次函數(shù)的性質即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標系,則,,,設,,,,根據,即,,,則,,即,,,則,,所以,,,,,,且,故,設,,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標運算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設元、消元,將問題轉化為元二次函數(shù)的值域問題.15.39【解析】

設等差數(shù)列公差為d,首項為,再利用基本量法列式求解公差與首項,進而求得即可.【詳解】設等差數(shù)列公差為d,首項為,根據題意可得,解得,所以.故答案為:39【點睛】本題考查等差數(shù)列的基本量計算以及前n項和的公式,屬于基礎題.16.31【解析】設,可化為,得,,,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)將函數(shù)的解析式表示為分段函數(shù),然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數(shù)的最大值,由題意得出,解此不等式即可得出實數(shù)的取值范圍.【詳解】.(1)當時,由,解得,此時;當時,由,解得,此時;當時,由,解得,此時.綜上所述,不等式的解集;(2)當時,函數(shù)單調遞增,則;當時,函數(shù)單調遞減,則,即;當時,函數(shù)單調遞減,則.綜上所述,函數(shù)的最大值為,由題知,,解得.因此,實數(shù)的取值范圍是.【點睛】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數(shù)問題,考查分類討論思想的應用,考查運算求解能力,屬于中等題.18.(1)詳見解析(2)【解析】

(1)如圖,作,交于,連接.因為,所以是的三等分點,可得.因為,,,所以,因為,所以,因為,所以,所以,因為,所以,所以,因為平面,平面,所以平面.又,平面,平面,所以平面.因為,、平面,所以平面平面,所以平面.(2)因為是等邊三角形,,所以.又因為,,所以,所以.又,平面,,所以平面.因為平面,所以平面平面.在平面內作平面.以B點為坐標原點,分別以所在直線為軸,建立如圖所示的空間直角坐標系,則,,,所以,,,.設為平面的法向量,則,即,令,可得.設為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.19.(1)證明見解析;(2).【解析】

(1)要證面面垂直需要先證明線面垂直,即證明出平面即可;(2)求出點A到平面的距離,然后根據棱錐的體積公式即可求出四棱錐的體積.【詳解】(1)連接,由是平行四邊形及N是的中點,得N也是的中點,因為點M是的中點,所以,因為,所以,又,,所以平面,又平面,所以平面平面;(2)過A作交于點O,因為平面平面,平面平面,所以平面,由是菱形及,得為三角形,則,由平面,得,從而側面為矩形,所以.【點睛】本題主要考查了面面垂直的證明,求四棱錐的體積,屬于一般題.20.(1)分層抽樣,簡單隨機抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】

(1)根據題意可以選用分層抽樣法,或者簡單隨機抽樣法.(2)由已知條件代入公式計算出結果,進而可以得到結果.(3)由已知條件計算出的分布列,進而求出的數(shù)學期望.【詳解】(1)分層抽樣,簡單隨機抽樣(抽簽亦可).(2)將列聯(lián)表中的數(shù)據代入公式計算得所以有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”.(3)以頻率作為概率,隨機選擇1家個體經營戶作為普查對象,入戶登記順利的概率為.可取0,1,2,3,計算可得的分布列為:0123【點睛】本題考查了運用數(shù)學模型解答實際生活問題,運用合理的抽樣方法,計算以及數(shù)據的分布列和數(shù)學期望,需要正確運用公式進行求解,本題屬于??碱}型,需要掌握解題方法.21.(1)有的把握認為喜歡物理與性別有關;(2)分布列見解析,.【解析】

(1)根據題目所給信息,列出列聯(lián)表,計算的觀測值,對照臨界值表可得出結論;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,確定的所有取值為、、、、.根據計數(shù)原理計算出每個所對應的概率,列出分布列計算期望即可.【詳解】(1)根據所給條件得列聯(lián)表如下:男女合計喜歡物理不喜歡物理合計,所以有的把握認為喜歡物理與性別有關;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【點睛】本題考查了獨立性檢驗、離散型隨機變量的概率分布列.離散型隨機變量的期望.屬于中等題.22.(1)見解析;(2)【解析】

(1)先判斷得到隨機變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論