版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
年中考數(shù)學(xué)考點(diǎn)分類(lèi)專(zhuān)題歸納銳角三角函數(shù)和解直角三角形知識(shí)點(diǎn)一、銳角三角函數(shù)
1.正弦、余弦、正切的定義
如圖、在Rt△ABC中,∠C=90°,如果銳角A確定:
(1)sinA=,這個(gè)比叫做∠A的正弦.(2)cosA=,這個(gè)比叫做∠A的余弦.
(3)tanA=,這個(gè)比叫做∠A的正切.
備注
(1)正弦、余弦、正切是在一個(gè)直角三角形中定義的,其本質(zhì)是兩條線段的比值,它只是一個(gè)數(shù)值,其大小只與銳角的大小有關(guān),而與所在直角三角形的大小無(wú)關(guān).
(2)sinA、cosA、tanA是一個(gè)整體符號(hào),即表示∠A三個(gè)三角函數(shù)值,書(shū)寫(xiě)時(shí)習(xí)慣上省略符號(hào)“∠”,
但不能寫(xiě)成sin·A,對(duì)于用三個(gè)大寫(xiě)字母表示一個(gè)角時(shí),其三角函數(shù)中符號(hào)“∠”不能省略,應(yīng)寫(xiě)成sin∠BAC,而不能寫(xiě)出sinBAC.
(3)sin2A表示(sinA)2,而不能寫(xiě)成sinA2.
(4)三角函數(shù)有時(shí)還可以表示成等.
2.銳角三角函數(shù)的定義
銳角A的正弦、余弦、正切都叫做∠A的銳角三角函數(shù).
3.銳角三角函數(shù)之間的關(guān)系:
余角三角函數(shù)關(guān)系:“正余互化公式”如∠A+∠B=90°,那么:sinA=cosB;cosA=sinB;
同角三角函數(shù)關(guān)系:sin2A+cos2A=1;tanA=
4.30°、45°、60°角的三角函數(shù)值∠A30°45°60°sinAcosAtanA1
知識(shí)點(diǎn)二、解直角三角形
在直角三角形中,由已知元素求出未知元素的過(guò)程,叫做解直角三角形.
解直角三角形的依據(jù)是直角三角形中各元素之間的一些相等關(guān)系,如圖:
角角關(guān)系:兩銳角互余,即∠A+∠B=90°;
邊邊關(guān)系:勾股定理,即;
邊角關(guān)系:銳角三角函數(shù),即
備注
解直角三角形,可能出現(xiàn)的情況歸納起來(lái)只有下列兩種情形:
(1)已知兩條邊(一直角邊和一斜邊;兩直角邊);
(2)已知一條邊和一個(gè)銳角(一直角邊和一銳角;斜邊和一銳角).這兩種情形的共同之處:有一條邊.因此,直角三角形可解的條件是:至少已知一條邊.
知識(shí)點(diǎn)三、解直角三角形的應(yīng)用
解直角三角形的知識(shí)應(yīng)用很廣泛,關(guān)鍵是把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,善于將某些實(shí)際問(wèn)題中的數(shù)量關(guān)系化歸為直角三角形中的邊角關(guān)系是解決實(shí)際應(yīng)用問(wèn)題的關(guān)鍵.1.解這類(lèi)問(wèn)題的一般過(guò)程
(1)弄清題中名詞、術(shù)語(yǔ)的意義,如仰角、俯角、坡度、坡角、方向角等概念,然后根據(jù)題意畫(huà)出幾何圖形,建立數(shù)學(xué)模型.
(2)將已知條件轉(zhuǎn)化為幾何圖形中的邊、角或它們之間的關(guān)系,把實(shí)際問(wèn)題轉(zhuǎn)化為解直角三角形的問(wèn)題.
(3)根據(jù)直角三角形(或通過(guò)作垂線構(gòu)造直角三角形)元素(邊、角)之間的關(guān)系解有關(guān)的直角三角形.
(4)得出數(shù)學(xué)問(wèn)題的答案并檢驗(yàn)答案是否符合實(shí)際意義,得出實(shí)際問(wèn)題的解.
2.常見(jiàn)應(yīng)用問(wèn)題
(1)坡度:;坡角:.
(2)方位角:
(3)仰角與俯角:
2.用解直角三角形的知識(shí)解決實(shí)際問(wèn)題的基本方法是:
把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題(解直角三角形),就是要舍去實(shí)際事物的具體內(nèi)容,把事物及它們的聯(lián)系轉(zhuǎn)化為圖形(點(diǎn)、線、角等)以及圖形之間的大小或位置關(guān)系.
借助生活常識(shí)以及課本中一些概念(如俯角、仰角、傾斜角、坡度、坡角等)的意義,也有助于把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題.
當(dāng)需要求解的三角形不是直角三角形時(shí),應(yīng)恰當(dāng)?shù)刈鞲?,化斜三角形為直角三角形再求解?/p>
3.銳角三角函數(shù)的應(yīng)用
用相似三角形邊的比的計(jì)算具有一般性,適用于所有形狀的三角形,而三角函數(shù)的計(jì)算是在直角三角形中解決問(wèn)題,所以在直角三角形中先考慮三角函數(shù),可以使過(guò)程簡(jiǎn)潔.
如:射影定理不能直接用,但是用等角的三角函數(shù)值相等進(jìn)行代換很簡(jiǎn)單:
∵∴
∵∴∵
∴1.(2024巴彥淖爾)南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚(yú)作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向10(1)海里的C處,為了防止某國(guó)海巡警干擾,請(qǐng)求我A處的漁監(jiān)船前往C處護(hù)航.如圖,已知C位于A處的東北方向上,A位于B的北偏西30°方向上,則A和C之間的距離為()A.10海里 B.20海里 C.20海里 D.10海里2.(2024益陽(yáng))如圖,小剛從山腳A出發(fā),沿坡角為α的山坡向上走了300米到達(dá)B點(diǎn),則小剛上升了()A.300sinα米 B.300cosα米 C.300tanα米 D.米3.(2024蘇州)如圖,某海監(jiān)船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長(zhǎng))為()A.40海里 B.60海里 C.20海里 D.40海里4.(2024云南)在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.5.(2024貴陽(yáng))如圖,A、B、C是小正方形的頂點(diǎn),且每個(gè)小正方形的邊長(zhǎng)為1,則tan∠BAC的值為()A. B.1 C. D.6.(2024長(zhǎng)春)如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面上).為了測(cè)量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米7.(2024宜昌)如圖,要測(cè)量小河兩岸相對(duì)的兩點(diǎn)P,A的距離,可以在小河邊取PA的垂線PB上的一點(diǎn)C,測(cè)得PC=100米,∠PCA=35°,則小河寬PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米8.(2024重慶)如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過(guò)一段坡度(或坡比)為i=1:0.75、坡長(zhǎng)為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測(cè)得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米9.(2024綿陽(yáng))一艘在南北航線上的測(cè)量船,于A點(diǎn)處測(cè)得海島B在點(diǎn)A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點(diǎn)時(shí),測(cè)得海島B在C點(diǎn)的北偏東15°方向,那么海島B離此航線的最近距離是()(結(jié)果保留小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):1.732,1.414)A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里10.(2024金華)如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=α,∠ADC=β,則竹竿AB與AD的長(zhǎng)度之比為()A. B. C. D.11.(2024天津)cos30°的值等于()A. B. C.1 D.12.(2024遼陽(yáng))如圖,一艘輪船自西向東航行,航行到A處測(cè)得小島C位于北偏東60°方向上,繼續(xù)向東航行10海里到達(dá)點(diǎn)B處,測(cè)得小島C在輪船的北偏東15°方向上,此時(shí)輪船與小島C的距離為_(kāi)__海里.(結(jié)果保留根號(hào))13.(2024葫蘆島)如圖,某景區(qū)的兩個(gè)景點(diǎn)A、B處于同一水平地面上、一架無(wú)人機(jī)在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無(wú)人機(jī)飛行至C處時(shí)、測(cè)得景點(diǎn)A的俯角為45°,景點(diǎn)B的俯角為30°,此時(shí)C到地面的距離CD為100米,則兩景點(diǎn)A、B間的距離為_(kāi)________米(結(jié)果保留根號(hào)).14.(2024大連)如圖,小明為了測(cè)量校園里旗桿AB的高度,將測(cè)角儀CD豎直放在距旗桿底部B點(diǎn)6m的位置,在D處測(cè)得旗桿頂端A的仰角為53°,若測(cè)角儀的高度是1.5m,則旗桿AB的高度約為_(kāi)____m.(精確到0.1m.參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)15.(2024北京)如圖所示的網(wǎng)格是正方形網(wǎng)格,∠BAC___∠DAE.(填“>”,“=”或“<”)16.(2024廣西)如圖,從甲樓底部A處測(cè)得乙樓頂部C處的仰角是30°,從甲樓頂部B處測(cè)得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是____m(結(jié)果保留根號(hào))17.(2024黃石)如圖,無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無(wú)人機(jī)距地面高度CD為米,點(diǎn)A、D、B在同一水平直線上,則A、B兩點(diǎn)間的距離是________米.(結(jié)果保留根號(hào))18.(2024咸寧)如圖,航拍無(wú)人機(jī)從A處測(cè)得一幢建筑物頂部B的仰角為45°,測(cè)得底部C的俯角為60°,此時(shí)航拍無(wú)人機(jī)與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為_(kāi)____m(結(jié)果保留整數(shù),1.73).19.(2024濰坊)如圖,一艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測(cè)得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處,此時(shí)測(cè)得島礁P在北偏東30°方向,同時(shí)測(cè)得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺(tái)風(fēng)到來(lái)之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/小時(shí)的速度繼續(xù)航行_______小時(shí)即可到達(dá).(結(jié)果保留根號(hào))20.(2024棗莊)如圖,某商店?duì)I業(yè)大廳自動(dòng)扶梯AB的傾斜角為31°,AB的長(zhǎng)為12米,則大廳兩層之間的高度為_(kāi)____米.(結(jié)果保留兩個(gè)有效數(shù)字)【參考數(shù)據(jù);sin31°=0.515,cos31°=0.857,tan31°=0.601】21.(2024德州)如圖,在4×4的正方形方格圖形中,小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),△ABC的頂點(diǎn)都在格點(diǎn)上,則∠BAC的正弦值是______.22.(2024廣元)如圖,雨后初睛,李老師在公園散步,看見(jiàn)積水水面上出現(xiàn)梯步上方樹(shù)的倒影,于是想利用倒影與物體的對(duì)稱(chēng)性測(cè)量這顆樹(shù)的高度,他的方法是:測(cè)得樹(shù)頂?shù)难鼋恰?、測(cè)量點(diǎn)A到水面平臺(tái)的垂直高度AB、看到倒影頂端的視線與水面交點(diǎn)C到AB的水半距離BC.再測(cè)得梯步斜坡的坡角∠2和長(zhǎng)度EF,根據(jù)以下數(shù)據(jù)進(jìn)行計(jì)算,如圖,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知線段ON和線段OD關(guān)于直線OB對(duì)稱(chēng).(以下結(jié)果保留根號(hào))(1)求梯步的高度MO;(2)求樹(shù)高M(jìn)N.23.(2024甘孜州)某小區(qū)為了安全起見(jiàn),決定將小區(qū)內(nèi)的滑滑板的傾斜角由45°調(diào)為30°,如圖,已知原滑滑板AB的長(zhǎng)為4米,點(diǎn)D,B,C在同一水平地面上,調(diào)整后滑滑板會(huì)加長(zhǎng)多少米?(結(jié)果精確到0.01米,參考數(shù)據(jù):1.414,1.732,2.449)24.(2024錦州)如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者,在消防車(chē)上點(diǎn)A處測(cè)得點(diǎn)B和點(diǎn)C的仰角分別為45°和65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5米,為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,1.4)25.(2024蘭州)如圖,斜坡BE,坡頂B到水平地面的距離AB為3米,坡底AE為18米,在B處,E處分別測(cè)得CD頂部點(diǎn)D的仰角為30°,60°,求CD的高度.(結(jié)果保留根號(hào))26.(2024青海)如圖,同學(xué)們利用所學(xué)知識(shí)去測(cè)量三江源某河段某處的寬度.小宇同學(xué)在A處觀測(cè)對(duì)岸點(diǎn)C,測(cè)得∠CAD=45°,小英同學(xué)在距點(diǎn)A處60米遠(yuǎn)的B點(diǎn)測(cè)得∠CBD=30°,請(qǐng)根據(jù)這些數(shù)據(jù)算出河寬(精確到0.01米,1.414,1.732).27.(2024徐州)如圖,1號(hào)樓在2號(hào)樓的南側(cè),兩樓高度均為90m,樓間距為AB.冬至日正午,太陽(yáng)光線與水平面所成的角為32.3°,1號(hào)樓在2號(hào)樓墻面上的影高為CA;春分日正午,太陽(yáng)光線與水平面所成的角為55.7°,1號(hào)樓在2號(hào)樓墻面上的影高為DA.已知CD=42m.(1)求樓間距AB;(2)若2號(hào)樓共30層,層高均為3m,則點(diǎn)C位于第幾層?(參考數(shù)據(jù):sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)28.(2024撫順)如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).(1)求燈桿CD的高度;(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)29.(2024盤(pán)錦)兩棟居民樓之間的距離CD=30米,樓AC和BD均為10層,每層樓高3米.(1)上午某時(shí)刻,太陽(yáng)光線GB與水平面的夾角為30°,此刻B樓的影子落在A樓的第幾層?(2)當(dāng)太陽(yáng)光線與水平面的夾角為多少度時(shí),B樓的影子剛好落在A樓的底部?30.(2024梧州)隨著人們生活水平的不斷提高,旅游已成為人們的一種生活時(shí)尚.為開(kāi)發(fā)新的旅游項(xiàng)目,我市對(duì)某山區(qū)進(jìn)行調(diào)查,發(fā)現(xiàn)一瀑布.為測(cè)量它的高度,測(cè)量人員在瀑布的對(duì)面山上D點(diǎn)處測(cè)得瀑布頂端A點(diǎn)的仰角是30°,測(cè)得瀑布底端B點(diǎn)的俯角是10°,AB與水平面垂直.又在瀑布下的水平面測(cè)得CG=27m,GF=17.6m(注:C、G、F三點(diǎn)在同一直線上,CF⊥AB于點(diǎn)F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(參考數(shù)據(jù):1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)31.(2024貴陽(yáng))如圖①,在Rt△ABC中,以下是小亮探究與之間關(guān)系的方法:∵sinA,sinB∴c,c∴根據(jù)你掌握的三角函數(shù)知識(shí).在圖②的銳角△ABC中,探究、、之間的關(guān)系,并寫(xiě)出探究過(guò)程.32.(2024廣安)據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.小強(qiáng)用所學(xué)知識(shí)對(duì)一條筆直公路上的車(chē)輛進(jìn)行測(cè)速,如圖所示,觀測(cè)點(diǎn)C到公路的距離CD=200m,檢測(cè)路段的起點(diǎn)A位于點(diǎn)C的南偏東60°方向上,終點(diǎn)B位于點(diǎn)C的南偏東45°方向上.一輛轎車(chē)由東向西勻速行駛,測(cè)得此車(chē)由A處行駛到B處的時(shí)間為10s.問(wèn)此車(chē)是否超過(guò)了該路段16m/s的限制速度?(觀測(cè)點(diǎn)C離地面的距離忽略不計(jì),參考數(shù)據(jù):1.41,1.73)33.(2024通遼)我市304國(guó)道通遼至霍林郭勒段在修建過(guò)程中經(jīng)過(guò)一座山峰,如圖所示,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)的人口資源環(huán)境問(wèn)題
- 魯科版高中化學(xué)選修1 化學(xué)與生活主題4 認(rèn)識(shí)生活中的材料習(xí)題
- 手足外科出科理論知識(shí)考試試題及答案
- 行政費(fèi)用控制策略計(jì)劃
- 創(chuàng)意資本要素手冊(cè)
- 博物館文物保護(hù)工程合同三篇
- 教學(xué)任務(wù)分解計(jì)劃
- 重癥醫(yī)學(xué)科搶救流程
- 兒童心理健康
- 海洋垃圾課件
- 腫瘤細(xì)胞代謝與腫瘤微環(huán)境課件
- 公司金融名詞解釋和問(wèn)答題(較全)Word版
- 虛擬仿真實(shí)驗(yàn)教學(xué)平臺(tái)課件
- 《軍事理論》課后復(fù)習(xí)題庫(kù)大全-第二章:國(guó)家安全
- 超星爾雅學(xué)習(xí)通《媒體創(chuàng)意經(jīng)濟(jì)玩轉(zhuǎn)互聯(lián)網(wǎng)時(shí)代》章節(jié)測(cè)試答案
- KF思維技術(shù)-在合作中解決問(wèn)題與決策完整課件
- 2023年傳染病防治知識(shí)考試試題及答案
- Windows server WEB服務(wù)器搭建與應(yīng)用說(shuō)課公開(kāi)課一等獎(jiǎng)省優(yōu)質(zhì)課大賽獲獎(jiǎng)?wù)n件
- 高考作文寫(xiě)作句子素材:動(dòng)漫臺(tái)詞(附適用主題與示例)
- 主題班會(huì)-同學(xué)情教學(xué)課件
- 泌尿系統(tǒng)完整結(jié)構(gòu)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論