版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
題型二反比例函數(shù)的圖象及性質(zhì)
【要點提煉】
一、【反比例函數(shù)的概念】
一般地,函數(shù)y=?(k是常數(shù),kWO)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成
X
了=丘-1的形式。自變量X的取值范圍是XW0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。
二、【反比例函數(shù)的圖象】
反比例函數(shù)的圖象是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四
象限,它們關(guān)于原點對稱。由于反比例函數(shù)中自變量xWO,函數(shù)yHO,所以,它的圖象與x軸、y
軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
三、【反比例函數(shù)k的幾何意義】
下列圖形中反比例函數(shù)表達式為了=月,其中涉及兩個反比例函數(shù)的,較大的k用左大表示,較
X
-§2
SAABO-S梯ZDCB
差量圖形
J
I4\\"\\o
?\yT\\rlVV
―r0\T九
ID昌。1
5=k大-左小V"大-左小s=左大,小
3二
2
綜合圖形
IL:
C
r1fz尸7(x>0
~~QAX~0]AXOlc
s陰=S矩-閑s=3網(wǎng)s=k大-標
四、【反比例函數(shù)的性質(zhì)】
反比例
函數(shù)
①x的取值范圍是xWO,①x的取值范圍是xWO,
y的取值范圍是v豐。;y的取值范圍是yWO;
性質(zhì)②當k>o時,函數(shù)圖象的兩個分支分別②當k<0時,函數(shù)圖象的兩個分支分別
在第一、三象限。在每個象限內(nèi),y在第二、四象限。在每個象限內(nèi),y
隨x的增大而減小。隨x的增大而增大。
【專題訓(xùn)練】
一.選擇題(共10小題)
1.(2020?蘭州)已知點/(xi,/),B(刈,")在反比例函數(shù)〉=一1的圖象上,若則
下列結(jié)論正確的是()
A.xi〈X2<0B.X2<工1<0C.0<xi<%2D.OVx2Vxi
【解答】解:v-3<o,
...圖象位于第二、四象限,在每一個象限內(nèi),夕隨x的增大而增大,
XVyi<y2<0,
???圖象在第四象限,
.'.0<Xl<X2,
故選:C.
2.(2020?阜新)若/(2,4)與8(-2,a)都是反比例函數(shù)(U0)圖象上的點,則a的值
是()
A.4B.-4C.2D.-2
【答案】B
【解析】解:???/(2,4)與5(-2,都是反比例函數(shù)歹二((左W0)圖象上的點,
:.k=2X4=-2a,
??a=-4,
故選:B.
7
3.(2020?寧夏)如圖,函數(shù)yi=x+l與函數(shù)”=亍的圖象相交于點“(1,機),N(-2,〃).若/
>",則x的取值范圍是()
A.x<-2或0cx<1B.x<-2或x>l
C.-2<x<0或0<x<lD.-2<x<0或x>l
【答案】D
【解析】解:由一次函數(shù)和反比例函數(shù)的圖象可知,當一次函數(shù)圖象在反比例函數(shù)圖象之上時,
所對應(yīng)的無的取值范圍為-2<x<0或x>l,
4.(2020?濰坊)如圖,函數(shù)y=fcr+6"W0)與尸:(加W0)的圖象相交于點/(-2,3),B(1,
-6)兩點,則不等式依的解集為()
C.x>lD.x<-2或0<x<l
【答案】D
【解析】解:二,函數(shù)、=依+6(笈W0)與y=f(m40)的圖象相交于點/(-2,3),2(1,-6)
兩點,
不等式/cx+b>?的解集為:X<-2或0<^<1,
故選:D.
5.(2020?徐州)如圖,在平面直角坐標系中,函數(shù)(x>0)與y=x-1的圖象交于點P(d6),
則代數(shù)式工-六的值為()
ab
【答案】c
【解析】解:
法一:由題意得,
4ri+7i7rwi7
r解得,=或=|"口(舍去,,
1+V17V17-1
:.點P(-------,—~~),
1+717,V17-1
即Bn:a=——,b=——,
.11221
"a~b~1+V17一417-114;
法二:由題意得,
4
函數(shù)歹=:(x>0)與y=x-1的圖象交于點P(a,b),
Aab=4,b=a-1,
.11b—a1
,abab4'
故選:C.
6.(2020?山西)已知點4(xi,yi),B(X2,?2),C(%3,>3)都在反比例函數(shù)y=](左VO)的圖象
上,且2Vo<%3,則>1,>2,V3的大小關(guān)系是()
A.yi>y\>y?,B.y3>yi>y\C.y\>yi>y3D.y3>y\>yi
【答案】A
【解析】解:???反比例函數(shù)y=[“<0)的圖象分布在第二、四象限,
在每一象限y隨X的增大而增大,
而Xl<X2<0<X3>
即y2>yi>y3-
故選:A.
417
7.(2020?濱州)如圖,點/在雙曲線上,點8在雙曲線>=苓上,且48〃x軸,點C、。在x
軸上,若四邊形/BCD為矩形,則它的面積為()
【答案】C
【解析】解:延長A4交y軸于E,則BELy軸,
:點/在雙曲線上,
二四邊形AEOD的面積為4,
:點2在雙曲線線尸?上,且/2〃x軸,
四邊形BEOC的面積為12,
矩形/BCD的面積為12-4=8.
8.(2020?重慶)如圖,在平面直角坐標系中,矩形/BCD的對角線NC的中點與坐標原點重合,點
E是X軸上一點,連接4E.若/。平分NCME,反比例函數(shù)歹=乙(左>0,x>0)的圖象經(jīng)過ZE
上的兩點4,F,且/尸=ERZUB51的面積為18,則人的值為(
A.6B.12C.18D.24
【答案】B
【解析】解:如圖,連接2。,OF,過點/作NNLOE于N,過點尸作于".
:.MN=ME,
:.FM=^AN,
?:A,斤在反比例函數(shù)的圖象上,
k
,?S^AON-S/\FOM~2,
11
:LON?AN=^?OM?FM,
22
1
:.ON=^OM,
:.ON=MN=EM,
:.ME=^OE,
?1
、?S叢FME=/^FOEf
9:AD平分NO4E,
:.ZOAD=ZEAD,
?四邊形Z5CQ是矩形,
.OA=OD,
:.ZOAD=ZODA=NDAE,
:.AE//BD,
??S”BE=S“OE,
**S/^AOE=18,
?;AF=EF,
.1_
??S/^EOF—~2^/\A0E-9,
.1_
=
??S^FME=^SAEOF3,
k
S^FOM=SAFOE-S^FME=9-3=6=訝,
.?#=12?
故選:B.
9.(2020?黔東南州)如圖,點/是反比例函數(shù)(x>0)上的一點,過點/作軸,垂足
為點C,NC交反比例函數(shù)y=,的圖象于點8,點尸是x軸上的動點,則△E18的面積為()
A.2B.4C.6D.8
【答案】A
【解析】解:如圖,連接CM、OB、PC.
?my軸,
??S^APC=S^AOC=2x|6|=3,SABPC=SABOC=4x|2|=l,
=
?'?SAR4BSAAPC-S^BPC=2.
故選:A.
1;
10.(2020?黔西南州)如圖,在菱形4BOC中,AB=2,ZA=60°,菱形的一個頂點C在反比例函
)
3
XD?產(chǎn)丁
【答案】B
【解析】解::在菱形N2OC中,ZA=60°,菱形邊長為2,
:.OC=2,ZCOB^60°,
過C作CE_LO8于E,
則NOCE=30°,
:.OE=1OC=1,CE=V3,
.,.點C的坐標為(-1,V3),
k
???頂點。在反比例函數(shù)y-的圖象上,
x
?*-y/3=-得k=-V3,
-i
即尸
二.填空題(共5小題)
11.(2020?大連)如圖,在平面直角坐標系中,正方形/BCD的頂點/與D在函數(shù)尸芯G>°)的
圖象上,軸,垂足為C,點5的坐標為(0,2),則左的值為8.
【答案】8
【解析】解:連接2。,與/C交于點O
:四邊形/BCD是正方形,/C_Lx軸,
:.BD所在對角線平行于x軸,
:B(0,2),
:.O'C=2=B0'=A0'=D0',
,點/的坐標為(2,4),
.,#=2X4=8,
故答案為:8.
12.(2020?宿遷)如圖,點/在反比例函數(shù)y=((x>0)的圖象上,點8在x軸負半軸上,直線
24c1
交y軸于點C,若7?=不△/。8的面積為6,則左的值為6.
DCL
【答案】6
【解析】解:過點/作軸于。,則△/DCs2\jgoc,
"0C一BC-2’
/C1
V—=/\AOB的面積為6,
DCL
.1
?*^^AOC==2,
.1
,?S“co=qSAAOC=L
???△AOD的面積=3,
根據(jù)反比例函數(shù)人的幾何意義得,||fc|=3,
??.|川=6,
??次>0,
:.k=6.
故答案為:6.
13.(2020?株洲)如圖所示,在平面直角坐標系工。歹中,四邊形O45C為矩形,點4、。分別在x
軸、?軸上,點3在函數(shù)(x>0,左為常數(shù)且左>2)的圖象上,邊與函數(shù)(x>0)
的圖象交于點D,則陰影部分。£>8C的面積為….(結(jié)果用含后的式子表示)
【解析】解:?.?。是反比例函數(shù)月=家%>0)圖象上一點
1
???根據(jù)反比例函數(shù)左的幾何意義可知:△49。的面積為2=1.
:點2在函數(shù)為=5(x>0,左為常數(shù)且左>2)的圖象上,四邊形0/8C為矩形,
...根據(jù)反比例函數(shù)k的幾何意義可知:矩形/3C。的面積為k.
:.陰影部分ODBC的面積=矩形ABCO的面積-△40D的面積=4-1.
故答案為:k-1.
14.(2020?遼陽)如圖,在△48C中,點/在反比例函數(shù)(后>0,x>0)的圖象上,
點B,。在x軸上,延長NC交y軸于點。,連接2D若△BCD的面積等于1,貝(U
的值為3.
【答案】3
【解析】解:作NEL8C于E,連接。/,
;4B=4C,
:.CE=BE,
:OC=
J.OC^^CE,
'JAE//OD,
:./\COD^/\CEA,
^CEA=(C—E)°2=4,
S〉COD”
,?叢BCD的面積等于1,OC=|O5,
.11
,?S/^COD=4s△3CZ)=4,
.1
??SAc£^—4x^-=l,
1
???OC=^CE,
.11
,,S/^AOC=2s△CE4=2,
?
qL1=3?
??OAJOE=2+2
i
,?*SAAOE=/(k>0),
??左=3,
故答案為3.
15.(2020?齊齊哈爾)如圖,在平面直角坐標系中,矩形/5CQ的邊45在y軸上,點C坐標為(2,
-2),并且/。:50=1:2,點。在函數(shù)y=[G>0)的圖象上,則后的值為2.
【答案】2
【解析】解:如圖,:點C坐標為(2,-2),
:.矩形O3CE的面積=2義2=4,
,:AO:BO=]:2,
矩形ZOED的面積=2,
:點。在函數(shù)(x>0)的圖象上,
;.左=2,
三.解答題(共6小題)
16.(2020?濟南)如圖,矩形O42C的頂點/,。分別落在x軸,y軸的正半軸上,頂點2(2,2百),
反比例函數(shù)>=[(x>0)的圖象與3C,N3分別交于。,E,BD=^.
(1)求反比例函數(shù)關(guān)系式和點£的坐標;
(2)寫出?!昱cNC的位置關(guān)系并說明理由;
(3)點尸在直線/C上,點G是坐標系內(nèi)點,當四邊形為菱形時,求出點G的坐標并判
斷點G是否在反比例函數(shù)圖象上.
【解析】解:⑴,:B(2,2V3),則8c=2,
1
而BD=彳
1Q3L
;.CD=2一/=會故點〃2汽),
將點。的坐標代入反比例函數(shù)表達式得:2店=年,解得左=3班,
2
故反比例函數(shù)表達式為了=學(xué),
33V3
當x=2時,y—故點E(2,——
22
,「3廠-3V3-
(2)由(1)知,D(-,2百),點E(2,丁),點B(2,2v5),
則AD=4,2E=孚,
1V3
十斤BD21EBT1BD
故而=5=7而=礪=^=而'
C.DE//AC-,
(3)①當點尸在點C的下方時,
當點G在點b的右方時,如下圖,
過點尸作軸于點X,
:四邊形3CFG為菱形,則BC=CF=FG=5G=2,
在RtZXCMC中,OA=BC=2,OC=AB=2?
貝!]tanNOG4=故/0cL4=30°,
則尸〃=聶。=1,CH=CF-cosZOCA=2x^-=V3,
故點尸(1,V3),則點G(3,V3),
當x=3時,y=辭=百,故點G在反比例函數(shù)圖象上;
②當點尸在點C的上方時,
同理可得,點G(1,3V3),
同理可得,點G在反比例函數(shù)圖象上;
綜上,點G的坐標為(3,V3)或(1,3V3)都在反比例函數(shù)圖象上.
17.(2020?盤錦)如圖,/、3兩點的坐標分別為(-2,0),(0,3),將線段48繞點8逆時針旋
轉(zhuǎn)90°得到線段8C,過點。作垂足為D,反比例函數(shù)>=]的圖象經(jīng)過點C.
(1)直接寫出點C的坐標,并求反比例函數(shù)的解析式;
(2)點P在反比例函數(shù)y=5的圖象上,當△PCD的面積為3時,求點尸的坐標.
【解析】解:(1):將線段繞點8逆時針旋轉(zhuǎn)90°得到線段8C,
:.AB=BC,ZABC=90°,
CDLOB,
:.NCDB=NAOB=NABC=90°,
:.ZABO+ZCBD=ZCBD+ZDCB=90°,
:.ZABO=ZDCB,
:.AABO沿4BCD(AAS),
:?CD=OB=3,BD=OA=2,
:.OD=3-2=1,
???C點的坐標為(3,1),
:?k=3X1=3,
反比例函數(shù)的解析式為:y=。;
JX
3
(2)設(shè)P(—,m),
m
?Uy軸,CD=3,
1
由△尸的面積為3得:-CD-|m-1|=3,
1
x3|m-1|=3,
:?m-1=±2,
???冽=3或m=-1,
33
當加=3時,-=1,當冽=-1時,一=一3,
mm
18.(2020?恩施州)如圖,在平面直角坐標系中,直線歹="-3〃(qWO)與x軸、>軸分別相交于
4、5兩點,與雙曲線尸會(Q0)的一個交點為C,且5C二夕C.
(1)求點4的坐標;
(2)當S&4oc=3時,求。和左的值.
【解析】解:(1)由題意得:令y=ax-3a(aWO)中歹=0,
BPax-3a=0,解得x=3,
,點4的坐標為(3,0),
故答案為(3,0).
(2)過。點作y軸的垂線交歹軸于M點,作x軸的垂線交x軸于N點,如下圖所示:
顯然,CM//OA,
:?/BCM=/BAO,且N/5O=NC5。,
J△BCMs/\BAO,
BCCM幡1CM
—=---,即:-=---,
BAAO33
JCM=1,
又SNOC=?04,CN=3
1
即:5x3xCN=3,
:.CN=2,
???C點的坐標為(1,2),
故反比例函數(shù)的—1X2=2,
再將點C(1,2)代入一次函數(shù)y=Qx-3a(qWO)中,
即2=a-3a,解得a=-1,
???當5^NOC=3時,a=-1,k=2.
19.(2020?廣州)如圖,平面直角坐標系xOy中,口CM5C的邊。。在x軸上,對角線4C,OB交
于點函數(shù)夕=9(x>0)的圖象經(jīng)過點/(3,4)和點M.
(1)求人的值和點"的坐標;
(2)求口O/BC的周長.
【解析】解:(1):點/(3,4)在y=J上,
:.k=n,
':四邊形OABC是平行四邊形,
:.AM=MC,
.,.點M的縱坐標為2,
:點加在>=¥的圖象上,
:.M(6,2).
(2)':AM=MC,A(3,4),M(6,2)
:.C(9,0),
:.OC=9,04=母+42=5,
二平行四邊形CM2C的周長為2X(5+9)=28.
20.(2020?荊州)九年級某數(shù)學(xué)興趣小組在學(xué)習了反比例函數(shù)的圖象與性質(zhì)后,進一步研究了函數(shù)
V=卷的圖象與性質(zhì),其探究過程如下:
U)繪制函數(shù)圖象,如圖1.
列表:下表是x與y的幾組對應(yīng)值,其中m=1;
X.??-3-2-1_11123???
-22
y.??212442m2…
33
描點:根據(jù)表中各組對應(yīng)值G,y),在平面直角坐標系中描出了各點;
連線:用平滑的曲線順次連接各點,畫出了部分圖象.請你把圖象補充完整;
(2)通過觀察圖1,寫出該函數(shù)的兩條性質(zhì);
①函數(shù)的圖象關(guān)于了軸對稱;
②當x<0時,y隨x的增大而增大,當x>0時,y隨x的增大而減小;
(3)①觀察發(fā)現(xiàn):如圖2.若直線y=2交函數(shù)y=告的圖象于4,8兩點,連接過點8作
\x\
3c〃。/交X軸于C.則S四邊形。/BC=4;
②探究思考:將①中“直線y=2”改為“直線y=a(a>0)”,其他條件不變,則S四邊形OZBC=
4;
③類比猜想:若直線y=a(tz>0)交函數(shù)夕=備">0)的圖象于/,3兩點,連接04,過點2
作8C〃Q4交x軸于C,貝US,/戒2k.
圖1圖2
【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省西安市高新一中2025屆高三最后一模英語試題含解析
- 云南省西疇縣第二中學(xué)2025屆高三第二次模擬考試英語試卷含解析
- 2025屆重慶市南坪中學(xué)高三最后一模數(shù)學(xué)試題含解析
- 9.1《念奴嬌?赤壁懷古》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 河南省三門峽市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析
- 2025屆新疆阿勒泰第二高級中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷含解析
- 《solidworks 機械設(shè)計實例教程》 課件 任務(wù)3.1 法蘭盤的設(shè)計
- 2025屆山東省濟南市山東師范大學(xué)附中高考英語倒計時模擬卷含解析
- 河北省保定市博野縣2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析
- 北京海淀外國語實驗2025屆高考仿真模擬語文試卷含解析
- 2024年銷售年終個人總結(jié)
- 2024年度師德師風工作計劃
- 工程質(zhì)量管理制度
- 初中音樂教師個人成長專業(yè)發(fā)展計劃
- GB/T 44705-2024道路運輸液體危險貨物罐式車輛罐體清洗要求
- 護理類醫(yī)療設(shè)備采購 投標方案(技術(shù)方案)
- 2024年法律職業(yè)資格考試主觀題試卷及答案指導(dǎo)
- 開票稅點自動計算器
- 建筑用砂石料采購 投標方案(技術(shù)方案)
- 小學(xué)四年級上冊勞動期末試卷
- 浙江開放大學(xué)2024年《法律文化》形考作業(yè)1-4答案
評論
0/150
提交評論