




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023屆北京五中高三下學(xué)期3月初態(tài)考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.計(jì)算等于()A. B. C. D.2.已知且,函數(shù),若,則()A.2 B. C. D.3.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面4.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積與圓錐的體積的比值為()A. B. C. D.6.已知,則()A. B. C. D.7.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對(duì)稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.8.已知角的終邊經(jīng)過點(diǎn)P(),則sin()=A. B. C. D.9.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或10.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點(diǎn)F的坐標(biāo)為(c,0),點(diǎn)A是第一象限內(nèi)雙曲線漸近線上的一點(diǎn),O為坐標(biāo)原點(diǎn),滿足|OA|=A.2 B.2 C.23311.已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.12.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是____________.(寫成區(qū)間的形式)14.已知數(shù)列的前項(xiàng)和為,,,,則滿足的正整數(shù)的所有取值為__________.15.一個(gè)房間的地面是由12個(gè)正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.16.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個(gè)容量為80的樣本,則抽取學(xué)生的人數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)只有一個(gè)零點(diǎn),求正實(shí)數(shù)的值.18.(12分)已知拋物線:的焦點(diǎn)為,過上一點(diǎn)()作兩條傾斜角互補(bǔ)的直線分別與交于,兩點(diǎn),(1)證明:直線的斜率是-1;(2)若,,成等比數(shù)列,求直線的方程.19.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.20.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.21.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.22.(10分)已知橢圓的右焦點(diǎn)為,過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為為坐標(biāo)原點(diǎn).(1)證明:點(diǎn)在軸的右側(cè);(2)設(shè)線段的垂直平分線與軸、軸分別相交于點(diǎn).若與的面積相等,求直線的斜率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對(duì)數(shù)運(yùn)算,求得所求表達(dá)式的值.【詳解】原式.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.2.C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.3.B【解析】
本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點(diǎn)睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.4.B【解析】
化簡復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對(duì)應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對(duì)應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.5.B【解析】
計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力.6.C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號(hào).7.B【解析】
先利用對(duì)稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對(duì)稱性可得:為的中點(diǎn),且,所以,因?yàn)?,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的知識(shí),考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.8.A【解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項(xiàng).9.D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線的距離.10.C【解析】
計(jì)算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.11.B【解析】
根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長方體的四個(gè)頂點(diǎn),即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為.故選B.【點(diǎn)睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對(duì)角線,對(duì)于一些比較特殊的三棱錐,在研究其外接球的問題時(shí)可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.12.A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點(diǎn)睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.14.20,21【解析】
由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.15.11【解析】
將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進(jìn)行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進(jìn)行分類,在其中會(huì)有相同元素的排列問題,需用到“縮倍法”.采用分類計(jì)數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個(gè):,3個(gè),2個(gè):,1個(gè),4個(gè):,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個(gè):,1個(gè),2個(gè):,綜上,一共有(種).故答案為:11.【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.16.1【解析】
直接根據(jù)分層抽樣的比例關(guān)系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學(xué)生的人數(shù)為6001.故答案為:1.【點(diǎn)睛】本題考查了分層抽樣的計(jì)算,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】
(1)把轉(zhuǎn)化成,令,由題意得,即證明恒成立,通過導(dǎo)數(shù)求證即可(2)直接求導(dǎo)可得,,令,得或,故根據(jù)0與的大小關(guān)系來進(jìn)行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當(dāng)時(shí),.所以,即,所以.所以當(dāng)時(shí),.解:(2)因?yàn)?,所?討論:①當(dāng)時(shí),,此時(shí)函數(shù)在區(qū)間上單調(diào)遞減.又,故此時(shí)函數(shù)僅有一個(gè)零點(diǎn)為0;②當(dāng)時(shí),令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當(dāng)時(shí),有.又,此時(shí),故當(dāng)時(shí),函數(shù)還有一個(gè)零點(diǎn),不符合題意;③當(dāng)時(shí),令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當(dāng)且時(shí),,故此時(shí)函數(shù)還有一個(gè)零點(diǎn),不符合題意.綜上,所求實(shí)數(shù)的值為.【點(diǎn)睛】本題考查不等式的恒成立問題和函數(shù)的零點(diǎn)問題,本題的難點(diǎn)在于把導(dǎo)數(shù)化成因式分解的形式,如,進(jìn)而分類討論,本題屬于難題18.(1)見解析;(2)【解析】
(1)設(shè),,由已知,得,代入中即可;(2)利用拋物線的定義將轉(zhuǎn)化為,再利用韋達(dá)定理計(jì)算.【詳解】(1)在拋物線上,∴,設(shè),,由題可知,,∴,∴,∴,∴,∴(2)由(1)問可設(shè)::,則,,,∴,∴,即(*),將直線與拋物線聯(lián)立,可得:,所以,代入(*)式,可得滿足,∴:.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系的應(yīng)用,在處理直線與拋物線位置關(guān)系的問題時(shí),通常要涉及韋達(dá)定理來求解,本題查學(xué)生的運(yùn)算求解能力,是一道中檔題.19.(1)見解析;(2).【解析】
(1)設(shè)中點(diǎn)為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點(diǎn)為,連接、,因?yàn)?,所?又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因?yàn)椋?,,,平面,又平面,平面平面;?)由于是底面直角三角形的斜邊的中點(diǎn),所以點(diǎn)是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點(diǎn)即為球心,記的中點(diǎn)為點(diǎn),則.由與相似可得,所以.所以三棱錐外接球的體積為.【點(diǎn)睛】本題考查面面垂直的證明,同時(shí)也考查了三棱錐外接球體積的計(jì)算,找出外接球球心的位置是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.20.(1);(2)證明見解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號(hào)即可,由此證明出所證不等式成立.【詳解】(1).當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集為;(2)要證,即證,因?yàn)椋?,所以,,?所以,.故所證不等式成立.【點(diǎn)睛】本題考查絕對(duì)值不等式的求解,同時(shí)也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.21.(1);(2)【解析】
(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項(xiàng)公式,進(jìn)而求出的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求數(shù)列的前項(xiàng)和.【詳解】解:(1),,是首項(xiàng)為,公比為的等比數(shù)列.所以,.(2).【點(diǎn)睛】本題考查了由數(shù)列的遞推公式求通項(xiàng)公式,錯(cuò)位相減法求數(shù)列的前n項(xiàng)和的問題,屬于中檔題.22.(1)證明見解析(2)【解析】
(1)設(shè)出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出點(diǎn)的橫坐標(biāo)即可證出;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 拍攝 演員合同范本
- 逾期罰款合同范本
- 相機(jī)銷售合同范本
- 全國旅游合同范本
- 2025-2030年中國生物蠟行業(yè)運(yùn)行狀況與發(fā)展風(fēng)險(xiǎn)分析報(bào)告
- 2025-2030年中國流感疫苗市場(chǎng)運(yùn)營現(xiàn)狀及發(fā)展趨勢(shì)分析報(bào)告
- 2025-2030年中國汽車注塑模具行業(yè)運(yùn)營現(xiàn)狀及發(fā)展規(guī)劃分析報(bào)告
- 2025-2030年中國汽車排氣系統(tǒng)行業(yè)十三五規(guī)劃與投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國日用五金產(chǎn)業(yè)發(fā)展現(xiàn)狀及前景趨勢(shì)分析報(bào)告
- 2025-2030年中國開關(guān)穩(wěn)壓電源供應(yīng)器市場(chǎng)規(guī)模分析及發(fā)展建議研究報(bào)告
- 人教版高中政治必修3政治與法治《第一課歷史和人民的選擇》教案及教學(xué)反思
- 【基于哈佛分析框架的上市公司財(cái)務(wù)研究-以中百集團(tuán)為例】
- 中職生心理特征和常見心理問題
- 美術(shù)第二課堂活動(dòng)方案2篇
- (名師整理)部編人教版語文初中課內(nèi)古詩文大全(五四制)
- 非常好的精益生產(chǎn)案例-值得借鑒
- 東南亞潤滑油市場(chǎng)研究報(bào)告和展望
- 煤礦安全知識(shí)300問 煤礦職工每日一題
- 《0-3歲嬰幼兒教育》課程教學(xué)大綱
- 2023年廣東醫(yī)科大學(xué)專插本中藥學(xué)真題
- GB/T 5392-2004林業(yè)機(jī)械油鋸技術(shù)條件
評(píng)論
0/150
提交評(píng)論