版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.若拋物線的對稱軸是直線,則方程的解是()A., B., C., D.,2.如圖,AB為⊙O的直徑,C、D是⊙O上的兩點,,弧AD=弧CD.則∠DAC等于()A. B. C. D.3.擲一枚質地均勻的硬幣10次,下列說法正確的是()A.每2次必有一次正面朝上 B.必有5次正面朝上C.可能有7次正面朝上 D.不可能有10次正面朝上4.如圖所示的幾何體的左視圖為()A. B. C. D.5.一個布袋內(nèi)只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機摸出一個球后放回攪勻,再隨機摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.6.如圖,正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,連接AF,則∠OFA的度數(shù)是()A.20° B.25° C.30° D.35°7.在△ABC中,點D、E分別在AB,AC上,DE∥BC,AD:DB=1:2,,則=(),A. B. C. D.8.如圖所示,的頂點是正方形網(wǎng)格的格點,則的值為()A. B. C. D.9.某旅游景點8月份共接待游客16萬人次,10月份共接待游客36萬人次,設游客每月的平均增長率為x,則下列方程正確的是()A.16(1+x2)=36 B.16x+16x(x+1)=36C.16(1+x)+16(1+x)2=36 D.16x(x+1)=3610.下列圖形中為中心對稱圖形的是()A.等邊三角形 B.平行四邊形 C.拋物線 D.五角星11.m是方程的一個根,且,則的值為()A. B.1 C. D.12.下列說法正確的是()A.垂直于半徑的直線是圓的切線 B.經(jīng)過三個點一定可以作圓C.圓的切線垂直于圓的半徑 D.每個三角形都有一個內(nèi)切圓二、填空題(每題4分,共24分)13.如圖,一組等距的平行線,點A、B、C分別在直線l1、l6、l4上,AB交l3于點D,AC交l3于點E,BC交于l5點F,若△DEF的面積為1,則△ABC的面積為_____.14.小慧準備給媽媽打個電話,但她只記得號碼的前位,后三位由,,這三個數(shù)字組成,具體順序忘記了,則她第一次試撥就撥通電話的概率是________.15.如圖,一塊飛鏢游戲板由大小相等的小正方形格子構成,向游戲板隨機投擲一枚飛鏢,擊中黑色區(qū)域的概率是______.16.如圖,OA、OB是⊙O的半徑,CA、CB是⊙O的弦,∠ACB=35°,OA=2,則圖中陰影部分的面積為_____.(結果保留π)17.如圖,矩形對角線交于點為線段上一點,以點為圓心,為半徑畫圓與相切于的中點交于點,若,則圖中陰影部分面積為________________.18.兩同學玩扔紙團游戲,在操場上固定了如下圖所示的矩形紙板,E為AD中點,且∠ABD=60°,每次紙團均落在紙板上,則紙團擊中陰影區(qū)域的概率是________.三、解答題(共78分)19.(8分)如圖,在Rt△ABC中,∠BAC=90°,BD是角平分線,以點D為圓心,DA為半徑的⊙D與AC相交于點E.(1)求證:BC是⊙D的切線;(2)若AB=5,BC=13,求CE的長.20.(8分)如圖,在平面直角坐標系中,點B的坐標是(2,2),將線段OB繞點O順時針旋轉120°,點B的對應點是點B1.(1)①求點B繞點O旋轉到點B1所經(jīng)過的路程長;②在圖中畫出1,并直接寫出點B1的坐標是;(2)有7個球除了編號不同外,其他均相同,李南和王易設計了如下的一個規(guī)則:裝入不透明的甲袋,裝入不透明的乙袋,李南從甲袋中,王易從乙袋中,各自隨機地摸出一個球(不放回),把李南摸出的球的編號作為橫坐標x,把王易摸出的球的編號作為縱坐標y,用列表法或畫樹狀圖法表示出(x,y)的所有可能出現(xiàn)的結果;(3)李南和王易各取一次小球所確定的點(x,y)落在1上的概率是.21.(8分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.(1)經(jīng)過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;(2)因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.22.(10分)如圖,在10×10正方形網(wǎng)格中,每個小正方形邊長均為1個單位.建立坐標系后,△ABC中點C坐標為(0,1).(1)把△ABC繞點C順時針旋轉90°后得到△A1B1C1,畫出△A1B1C1,并寫出A1坐標.(2)把△ABC以O為位似中心放大,使放大前后對應邊長為1:2,畫出放大后的△A2B2C2,并寫出A2坐標.23.(10分)如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結果保留根號).24.(10分)國家教育部提出“每天鍛煉一小時,健康工作五十年,幸福生活一輩子”.萬州區(qū)某中學對九年級部分學生進行問卷調查“你最喜歡的鍛煉項目是什么?”,規(guī)定從“打球”,“跑步”,“游泳”,“跳繩”,“其他”五個選項中選擇自己最喜歡的項目,且只能選擇一個項目,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.最喜歡的鍛煉項目人數(shù)打球120跑步游泳跳繩30其他(1)這次問卷調查的學生總人數(shù)為,人數(shù);(2)扇形統(tǒng)計圖中,,“其他”對應的扇形的圓心角的度數(shù)為度;(3)若該年級有1200名學生,估計喜歡“跳繩”項目的學生大約有多少人?25.(12分)如圖,AB是⊙O的直徑,點D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判斷直線CD與⊙O的位置關系,并說明理由;(2)若⊙O的半徑為1,求圖中陰影部分的面積(結果保留π).26.如圖,拋物線y=ax2+bx+6與x軸交于點A(6,0),B(﹣1,0),與y軸交于點C.(1)求拋物線的解析式;(2)若點M為該拋物線對稱軸上一點,當CM+BM最小時,求點M的坐標.(3)拋物線上是否存在點P,使△BCP為等腰三角形?若存在,有幾個?并請在圖中畫出所有符合條件的點P,(保留作圖痕跡);若不存在,說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】利用對稱軸公式求出b的值,然后解方程.【詳解】解:由題意:解得:b=-4∴解得:,故選:C【點睛】本題考查拋物線對稱軸公式及解一元二次方程,熟記公式正確計算是本題的解題關鍵.2、C【分析】利用圓周角定理得到,則,再根據(jù)圓內(nèi)接四邊形的對角互補得到,又根據(jù)弧AD=弧CD得到,然后根據(jù)等腰三角形的性質和三角形的內(nèi)角和定理可得出的度數(shù).【詳解】∵AB為⊙O的直徑∵弧AD=弧CD故選:C.【點睛】本題考查了圓周角定理、圓內(nèi)接四邊形的性質、等腰三角形的性質等知識點,利用圓內(nèi)接四邊形的性質求出的度數(shù)是解題關鍵.3、C【分析】利用不管拋多少次,硬幣正面朝上的概率都是,進而得出答案.【詳解】解:因為一枚質地均勻的硬幣只有正反兩面,
所以不管拋多少次,硬幣正面朝上的概率都是,
所以擲一枚質地均勻的硬幣10次,
可能有7次正面向上;
故選:C.【點睛】本題考查了可能性的大小,明確概率的意義是解答的關鍵,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、D【解析】根據(jù)左視圖是從幾何體左面看得到的圖形,認真觀察實物,可得這個幾何體的左視圖為長方形,據(jù)此觀察選項即可得.【詳解】觀察實物,可知這個幾何體的左視圖為長方形,只有D選項符合題意,故選D.【詳解】本題考查了幾何體的左視圖,明確幾何體的左視圖是從幾何體的左面看得到的圖形是解題的關鍵.注意錯誤的選項B、C.5、D【解析】試題分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,隨機摸出一個球后放回攪勻,再隨機摸出一個球所以的結果有9種,兩次摸出的球都是黑球的結果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.6、B【解析】由旋轉的性質和正方形的性質可得∠FOC=40°,AO=OD=OC=OF,∠AOC=90°,再根據(jù)等腰三角形的性質可求∠OFA的度數(shù).【詳解】∵正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OFA=25°故選B.【點睛】本題考查了旋轉的性質,正方形的性質,等腰三角形的性質,熟練運用旋轉的性質解決問題是本題的關鍵.7、A【分析】根據(jù)DE∥BC得到△ADE∽△ABC,再結合相似比是AD:AB=1:3,因而面積的比是1:1.【詳解】解:如圖:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:1.故選:A.【點睛】本題考查的是相似三角形的判定與性質,熟知相似三角形面積的比等于相似比的平方是解答此題的關鍵.8、B【分析】連接CD,求出CD⊥AB,根據(jù)勾股定理求出AC,在Rt△ADC中,根據(jù)銳角三角函數(shù)定義求出即可.【詳解】解:連接CD(如圖所示),設小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【點睛】本題考查了勾股定理,銳角三角形函數(shù)的定義,等腰三角形的性質,直角三角形的判定的應用,關鍵是構造直角三角形.9、A【分析】設游客每月的平均增長率為x,根據(jù)該旅游景點8月份及10月份接待游客人次數(shù),即可得出關于x的一元二次方程,此題得解.【詳解】解:設游客每月的平均增長率為x,依題意,得:16(1+x)2=1.故選:A.【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.10、B【分析】根據(jù)中心對稱圖形的概念求解.【詳解】A、等邊三角形不是中心對稱圖形,故本選項錯誤;B、平行四邊形是中心對稱圖形,故本選項正確;C、拋物線不是中心對稱圖形,故本選項錯誤;D、五角星不是中心對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、A【解析】將m代入關于x的一元二次方程x2+nx+m=0,通過解該方程即可求得m+n的值.【詳解】解:∵m是關于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得m+n=-1;
故選:A.【點睛】本題考查了一元二次方程的解的定義.一元二次方程ax2+bx+c=0(a≠0)的解一定滿足該一元二次方程的關系式.12、D【分析】根據(jù)與圓有關的基本概念依次分析各項即可判斷.【詳解】A.垂直于半徑且經(jīng)過切點的直線是圓的切線,注意要強調“經(jīng)過切點”,故本選項錯誤;
B.經(jīng)過不共線的三點一定可以作圓,注意要強調“不共線”,故本選項錯誤;C.圓的切線垂直于過切點的半徑,注意強調“過切點”,故本選項錯誤;
D.每個三角形都有一個內(nèi)切圓,本選項正確,故選D.【點睛】本題考查了有關圓的切線的判定與性質,解答本題的關鍵是注意與圓有關的基本概念中的一些重要字詞,學生往往容易忽視,要重點強調.二、填空題(每題4分,共24分)13、【分析】在三角形中由同底等高,同底倍高求出,根據(jù)平行線分線段成比例定理,求出,最后由三角形的面積的和差法求得.【詳解】連接DC,設平行線間的距離為h,AD=2a,如圖所示:∵,,∴S△DEF=S△DEA,又∵S△DEF=1,∴S△DEA=1,同理可得:,又∵S△ADC=S△ADE+S△DEC,∴,又∵平行線是一組等距的,AD=2a,∴,∴BD=3a,設C到AB的距離為k,∴ak,,∴,又∵S△ABC=S△ADC+S△BDC,∴.故答案為:.【點睛】本題綜合考查了平行線分線段成比例定理,平行線間的距離相等,三角形的面積求法等知識,重點掌握平行線分線段成比例定理,難點是作輔助線求三角形的面積.14、【解析】首先根據(jù)題意可得:可能的結果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【詳解】∵她只記得號碼的前5位,后三位由5,1,2,這三個數(shù)字組成,∴可能的結果有:512,521,152,125,251,215;∴他第一次就撥通電話的概率是:故答案為.【點睛】考查概率的求法,明確概率的意義是解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的之比.15、【分析】求出黑色區(qū)域面積與正方形總面積之比即可得答案.【詳解】圖中有9個小正方形,其中黑色區(qū)域一共有3個小正方形,所以隨意投擲一個飛鏢,擊中黑色區(qū)域的概率是,故答案為.【點睛】本題考查了幾何概率,熟練掌握概率的計算公式是解題的關鍵.注意面積之比幾何概率.16、【分析】利用扇形的面積公式計算即可.【詳解】∵∠AOB=2∠ACB=70°,∴S扇形OAB==,故答案為.【點睛】本題主要考查扇形的面積公式,求出扇形的圓心角是解題的關鍵.17、【分析】連接BG,根據(jù)切線性質及G為中點可知BG垂直平分AO,再結合矩形性質可證明為等邊三角形,從而得到∠ABD=60°,∠ADB=30°,再利用30°角直角三角形的三邊關系求出AB,然后求出和扇形BEF的面積,兩者相減即可得到陰影部分面積.【詳解】連接BG,由題可知BG⊥OA,∵G為OA中點,∴BG垂直平分OA,∴AB=OB,∵四邊形ABCD為矩形,∴OA=OB=OD=OC,∠BAD=90°,∴AB=OB=OA,即為等邊三角形,∴∠ABO=∠BAO=60°,∴∠ADB=30°,∠ABG=30°,在中,∠ADB=30°,AD=,∴AB=OA=2,在中,∠ABG=30°,AB=2,∴AG=1,BG=,∴,又∵,∴.故答案為:.【點睛】本題考查了扇形面積的計算,矩形的性質,含30°角的直角三角形的三邊關系以及等邊三角形的判定與性質,較為綜合,需熟練掌握各知識點.18、【分析】先根據(jù)矩形的性質求出矩形對角線所分的四個三角形面積相等,再根據(jù)E為AD中點得出S△ODES△OAD,進而求解即可.【詳解】∵ABCD是矩形,∴S△AOD=S△AOB=S△BOC=S△CODS矩形紙板ABCD.又∵E為AD中點,∴S△ODES△OAD,∴S△ODES矩形紙板ABCD,∴紙團擊中陰影區(qū)域的概率是.故答案為:.【點睛】本題考查了幾何概率,用到的知識點為:概率=相應的面積與總面積之比.三、解答題(共78分)19、(1)證明詳見解析;(2).【解析】試題分析:(1)過點D作DF⊥BC于點F,根據(jù)角平分線的性質得到AD=DF.根據(jù)切線的判定定理即可得到結論;(2)根據(jù)切線的性質得到AB=FB.根據(jù)和勾股定理列方程即可得到結論.試題解析:(1)證明:過點D作DF⊥BC于點F,∵∠BAD=90°,BD平分∠ABC,∴AD=DF.∵AD是⊙D的半徑,DF⊥BC,∴BC是⊙D的切線;(2)解:∵∠BAC=90°.∴AB與⊙D相切,∵BC是⊙D的切線,∴AB=FB.∵AB=5,BC=13,∴CF=8,AC=1.在Rt△DFC中,設DF=DE=r,則,解得:r=.∴CE=.考點:切線的判定;圓周角定理.20、(1)①;②見解析,B1的坐標是(0,﹣4);(2)見詳解;(3)【分析】(1)①根據(jù)勾股定理算出OB的長,再根據(jù)弧長公式算出線段OB繞著O點旋轉到B1所經(jīng)過的路徑長;②由①得∠BOH=30°,結合圖象得到旋轉后的B1的坐標;(2)利用樹狀圖得到所有可能的結果;(3)計算各點到原點的距離,可判斷點落在1上的結果,即可求出概率.【詳解】解:(1)①作BH⊥x軸于點H,∵點B的坐標是(2,2),∴BH=2,OH=2,∴OB==4,∴B繞點O旋轉到點B1所經(jīng)過的路程長==;②如圖,1為所作,過B作BH⊥x軸,∵tan∠BOH=,∴∠BOH=30°,又∵∠BOB1=120°,∴∠HOB1=90°,∴點B1在y軸負半軸上由旋轉性質可知OB=OB1==4,所以點B1的坐標是(0,﹣4);(2)畫樹狀圖為:共有12種等可能的結果:分別為(4,0)(4,-1)(4,-2)(4,-6)()()()()(,0)(,-1)(,-2)(,-6);(3)(4,0)到原點的距離為:4,(4,-1)到原點的距離為:=,(4,-2)到原點的距離為:=,(4,-6)到原點的距離為=,()到原點的距離是,()到原點的距離是=,()到原點的距離為:=4,()到原點的距離是=4,(,0)到原點的距離為,(,-1)到原點的距離為=,(,-2)到原點的距離是=,(,-6)到原點的距離為=,點(x,y)落在1上的結果數(shù)為2,所以點(x,y)落在1上的概率==.【點睛】本題考查作圖—旋轉變換、旋轉性質、概率問題樹狀圖、弧長等問題,難度適中.21、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據(jù)拋物線在坐標系的位置,可用待定系數(shù)法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.22、(1)見解析,A1(2,3);(2)見解析,A2(4,-6).【分析】(1)根據(jù)旋轉變換的定義,將三角形的三個頂點分別順時針旋轉90°后得到對應點,順次連接即可得;(2)根據(jù)位似變換的定義得出點的對應點,順次連接即可得.【詳解】解:(1)如下圖所示:即為所求,A1坐標為(2,3);(2)如下圖所示:即為所求,A2坐標為(4,?6).【點睛】本題考查了旋轉作圖及圖形位似的知識,解答此類題目的關鍵是就是尋找對應點,要求掌握旋轉三要素、位似的特點.23、大樹的高度為(9+3)米【分析】根據(jù)矩形性質得出,再利用銳角三角函數(shù)的性質求出問題即可.【詳解】解:如圖,過點D作DG⊥BC于G,DH⊥CE于H,則四邊形DHCG為矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,設BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大樹的高度為(9+3)米.【點睛】本題考查了仰角、坡角的定義,解直角三角形的應用,能借助仰角構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形是解題的關鍵.24、(1)300,90;(2)10,18;(3)120人【分析】(1)根據(jù)打球人數(shù)占總人數(shù)的40%可求出總人數(shù),再根據(jù)比例關系求出游泳人數(shù),再用總人數(shù)減去打球、游泳、跳繩的人數(shù)即為的值;(2)用跳繩人數(shù)除以總人數(shù),得到n%的值,即可求出n,求出其他所占比例,再乘以360°即可得到圓心角度數(shù);(3)用1200人乘以跳繩所占比例即可得出答案.【詳解】解:(1)總人數(shù)=(人)游泳人數(shù)(人)∴(人)故答案為:300,90;(2)n%=∴n=10,∴m%=1-40%-25%-20%-10%=5%∴“其他”對應的扇形的圓心角的度數(shù)為360°×5%=18°故答案為:10,18;(3)由于在調查的300名學生中,喜歡“跳繩”項目的學生有3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣場景觀施工合同
- 【初中生物】從種到界-2024-2025學年七年級生物上冊同步教學課件(人教版2024)
- 2024租地合同協(xié)議書范本農(nóng)村租地協(xié)議書范本
- 2024年度「新能源領域研究開發(fā)」合同
- 2024年冷庫建造施工合同模板
- 2024年度銷售合同:醫(yī)療設備供應
- 2024年店鋪裝修合同范本
- 2024年度」品牌代言協(xié)議明星效應助力品牌
- 2024年度智能制造生產(chǎn)線改造合同
- 認識梯形課件教學課件
- 體量與力量雕塑的美感課件高中美術人美版美術鑒賞
- 水災期間的食品安全措施
- 上下班安全交通培訓
- 股骨頭置換術后護理查房
- 《招商招租方案》課件
- 第六單元中國特色社會主義生態(tài)文明建設及結語練習-2023-2024學年中職高教版(2023)中國特色社會主義
- 結算周期與付款方式
- 【S鋼材民營企業(yè)經(jīng)營管理探究17000字(論文)】
- 林木種質資源調查表(新表)
- 蔬菜出口基地備案管理課件
- 子宮異常出血的護理
評論
0/150
提交評論